These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 4288828)

  • 21. Inhibitory effect of combinations of heat treatment, pH, and sodium chloride on a growth from spores of nonproteolytic Clostridium botulinum at refrigeration temperature.
    Graham AF; Mason DR; Peck MW
    Appl Environ Microbiol; 1996 Jul; 62(7):2664-8. PubMed ID: 8779606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of water activity and pH on growth and toxin production by Clostridium botulinum type G.
    Briozzo J; de Lagarde EA; Chirife J; Parada JL
    Appl Environ Microbiol; 1986 Apr; 51(4):844-8. PubMed ID: 3518631
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PHYSIOLOGY OF THE SPORULATION PROCESS IN CLOSTRIDIUM BOTULINUM. I. CORRELATION OF MORPHOLOGICAL CHANGES WITH CATABOLIC ACTIVITIES, SYNTHESIS OF DIPICOLINIC ACID, AND DEVELOPMENT OF HEAT RESISTANCE.
    DAY LE; COSTILOW RN
    J Bacteriol; 1964 Sep; 88(3):690-4. PubMed ID: 14208508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A study of the effect of ionizing radiation on resistance, germination, and toxin synthesis of Clostridium botulinum spores, types A, B, and E. COO-1095-3.
    Graikoski JT; Kempe LL
    COO Rep; 1966 Jan; ():1-100. PubMed ID: 4312998
    [No Abstract]   [Full Text] [Related]  

  • 25. Combining heat treatment and subsequent incubation temperature to prevent growth from spores of non-proteolytic Clostridium botulinum.
    Stringer SC; Fairbairn DA; Peck MW
    J Appl Microbiol; 1997 Jan; 82(1):128-36. PubMed ID: 9113882
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Effect of direct sunbeams on spores of Clostridium botulinum and Clostridium perfringens of the types A].
    Mikitiuk PV
    Mikrobiol Zh; 1975; 37(2):152-4. PubMed ID: 175248
    [No Abstract]   [Full Text] [Related]  

  • 27. Role of a protease in natural activation of Clostridium botulinum neurotoxin.
    Das Gupta BR; Sugiyama H
    Infect Immun; 1972 Oct; 6(4):587-90. PubMed ID: 4564288
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PHYSIOLOGY OF THE SPORULATION PROCESS IN CLOSTRIDIUM BOTULINUM. II. MATURATION OF FORESPORES.
    DAY LE; COSTILOW RN
    J Bacteriol; 1964 Sep; 88(3):695-701. PubMed ID: 14208509
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characteristics of Clostridium botulinum type F isolated from the Pacific Coast of the United States.
    Eklund MW; Poysky FT; Wieler DI
    Appl Microbiol; 1967 Nov; 15(6):1316-23. PubMed ID: 4865980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of plating medium on heat activation requirement of Clostridium botulinum spores.
    Montville TJ
    Appl Environ Microbiol; 1981 Oct; 42(4):734-6. PubMed ID: 7039510
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phenotypic and Genotypic Characterization of Bacteriocinogenic Enterococci Against Clostridium botulinum.
    Shehata AA; Tarabees R; Basiouni S; Gamil M; Kamal AS; Krüger M
    Probiotics Antimicrob Proteins; 2017 Jun; 9(2):182-188. PubMed ID: 27914002
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical genetics of bacterial sporulation. IV. Sequential development of resistances to chemical and physical agents during sporulation of Bacillus subtilis.
    Milhaud P; Balassa G
    Mol Gen Genet; 1973 Sep; 125(3):241-50. PubMed ID: 4204357
    [No Abstract]   [Full Text] [Related]  

  • 33. Immunochemical investigations on the antigenic structure of heat resistant "Cl. perfringens" type A strains.
    Meisel-Mikolajczyk F; Dworczyński A; Kubica J
    Prog Immunobiol Stand; 1970; 4():601-8. PubMed ID: 4320521
    [No Abstract]   [Full Text] [Related]  

  • 34. Responses of Clostridium botulinum type B and E progenitor toxins to some clostridial sulfhydryl-dependent proteases.
    Oishi I; Okada T; Sakaguchi G
    Jpn J Med Sci Biol; 1975 Jun; 28(3):157-64. PubMed ID: 1104932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heat injury and recovery of vegetative cells of Clostridium botulinum type E.
    Pierson MD; Payne SL; Ades GL
    Appl Microbiol; 1974 Feb; 27(2):425-6. PubMed ID: 4595963
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Type E Botulinum Neurotoxin-Producing Clostridium butyricum Strains Are Aerotolerant during Vegetative Growth.
    Camerini S; Marcocci L; Picarazzi L; Iorio E; Ruspantini I; Pietrangeli P; Crescenzi M; Franciosa G
    mSystems; 2019; 4(2):. PubMed ID: 31058231
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The stability of toxigenicity in Clostridium botulinum types C and D.
    Oguma K
    J Gen Microbiol; 1976 Jan; 92(1):67-75. PubMed ID: 1107486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Response of Clostridium perfringens and its L form to bacteriocins of C. perfringens.
    Mahony DE
    Can J Microbiol; 1982 Sep; 28(9):1032-6. PubMed ID: 6291734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a combined selection and enrichment PCR procedure for Clostridium botulinum Types B, E, and F and its use to determine prevalence in fecal samples from slaughtered pigs.
    Dahlenborg M; Borch E; Rådström P
    Appl Environ Microbiol; 2001 Oct; 67(10):4781-8. PubMed ID: 11571185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of small acid-soluble proteins (SASPs) in protection of spores of Clostridium botulinum against nitrous acid.
    Meaney CA; Cartman ST; McClure PJ; Minton NP
    Int J Food Microbiol; 2016 Jan; 216():25-30. PubMed ID: 26386202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.