These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 4289245)

  • 1. Glycine metabolism. 3. A flavin-linked dehydrogenase associated with the glycine cleavage system in Peptococcus glycinophilus.
    Klein SM; Sagers RD
    J Biol Chem; 1967 Jan; 242(2):297-300. PubMed ID: 4289245
    [No Abstract]   [Full Text] [Related]  

  • 2. Electron transport function of a heat-stable protein and a flavoprotein in the oxidative decarboxylation of glycine by Peptococcus glycinophilus.
    Baginsky ML; Huennekens FM
    Biochem Biophys Res Commun; 1966 Jun; 23(5):600-5. PubMed ID: 4290071
    [No Abstract]   [Full Text] [Related]  

  • 3. Glycine metabolism. II. Kinetic and optical studies on the glycine decarboxylase system from Peptococcus glycinophilus.
    Klein SM; Sagers RD
    J Biol Chem; 1966 Jan; 241(1):206-9. PubMed ID: 5901048
    [No Abstract]   [Full Text] [Related]  

  • 4. Glycine metabolism. IV. Effect of borohydride reduction on the pyridoxal phosphate-containing glycine decarboxylase from Peptococcus glycinophilus.
    Klein SM; Sagers RD
    J Biol Chem; 1967 Jan; 242(2):301-5. PubMed ID: 6016614
    [No Abstract]   [Full Text] [Related]  

  • 5. Glycine metabolism. I. Properties of the system catalyzing the exchange of bicarbonate with the carboxyl group of glycine in Peptococcus glycinophilus.
    Klein SM; Sagers RD
    J Biol Chem; 1966 Jan; 241(1):197-205. PubMed ID: 5901047
    [No Abstract]   [Full Text] [Related]  

  • 6. Glycine metabolism. Lipoic acid as the prosthetic group in the electron transfer protein P2 from Peptococcus glycinophilus.
    Robinson JR; Klein SM; Sagers RD
    J Biol Chem; 1973 Aug; 248(15):5319-23. PubMed ID: 4588680
    [No Abstract]   [Full Text] [Related]  

  • 7. Purification and comparative studies of dihydrolipoamide dehydrogenases from the anaerobic, glycine-utilizing bacteria Peptostreptococcus glycinophilus, Clostridium cylindrosporum, and Clostridium sporogenes.
    Dietrichs D; Andreesen JR
    J Bacteriol; 1990 Jan; 172(1):243-51. PubMed ID: 2294086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. THE FLAVIN COMPONENTS OF THE NADH DEHYDROGENASE OF THE RESPIRATORY CHAIN.
    KANIUGA Z; VEEGER C
    Biochim Biophys Acta; 1963 Oct; 77():339-42. PubMed ID: 14090453
    [No Abstract]   [Full Text] [Related]  

  • 9. Purification and characterization of glutamic acid dehydrogenase and -ketoglutaric acid reductase from Peptococcus aerogenes.
    Johnson WM; Westlake DW
    Can J Microbiol; 1972 Jun; 18(6):881-92. PubMed ID: 4338318
    [No Abstract]   [Full Text] [Related]  

  • 10. Alpha-ketoglutarate as an intermediate in glutamate metabolism by Peptococcus aerogenes.
    Johnson WM; Westlake DW
    Can J Microbiol; 1972 Jun; 18(6):875-80. PubMed ID: 4338317
    [No Abstract]   [Full Text] [Related]  

  • 11. Nicotinamide adenine dinucleotide-dependent formate dehydrogenase from Rhodopseudomonas palustris.
    Yoch DC; Lindstrom ES
    Arch Mikrobiol; 1969; 67(2):182-8. PubMed ID: 4318273
    [No Abstract]   [Full Text] [Related]  

  • 12. [Mechanism of the reversible glycine cleavage reaction in rat liver (author's transl)].
    Motokawa Y
    Seikagaku; 1975 May; 47(5):191-205. PubMed ID: 1171905
    [No Abstract]   [Full Text] [Related]  

  • 13. BIOLOGICAL OXIDATIONS.
    MASSEY V; VEEGER C
    Annu Rev Biochem; 1963; 32():579-638. PubMed ID: 14140707
    [No Abstract]   [Full Text] [Related]  

  • 14. [Mechanism of action of flavin enzymes].
    Gardas A
    Postepy Biochem; 1966; 12(4):513-33. PubMed ID: 4289954
    [No Abstract]   [Full Text] [Related]  

  • 15. ELECTRON TRANSPORT IN PEPTOSTREPTOCOCCUS ELSDENII.
    BALDWIN RL; MILLIGAN LP
    Biochim Biophys Acta; 1964 Dec; 92():421-32. PubMed ID: 14269334
    [No Abstract]   [Full Text] [Related]  

  • 16. Flavoproteins of mitochondrial fatty acid oxidation.
    Garland PB; Chance B; Ernster L; Lee CP; Wong D
    Proc Natl Acad Sci U S A; 1967 Oct; 58(4):1696-702. PubMed ID: 4295832
    [No Abstract]   [Full Text] [Related]  

  • 17. [Oxydation of reduced nicotinamide-adenine nucleotide in Rhodospirillum rubrum. II. On a reversible temperature-dependent activation of apoNADH dehydrogenase].
    Boll M
    Arch Mikrobiol; 1968; 62(4):349-57. PubMed ID: 4303728
    [No Abstract]   [Full Text] [Related]  

  • 18. AMINO ACIDS AS SUBSTRATE FOR THE REDUCTION OF TELLURITE BY CELLS OF PROTEUS VULGARIS.
    NERMUT MV
    Folia Microbiol (Praha); 1965 Mar; 10():104-14. PubMed ID: 14332133
    [No Abstract]   [Full Text] [Related]  

  • 19. Evidence that apo-reduced nicotinamide adenine dinucleotide dehydrogenase and apo-electron-transferring flavoprotein from Peptostreptococcus elsdenii are identical.
    Whitfield CD; Mayhew SG
    J Biol Chem; 1974 May; 249(9):2811-5. PubMed ID: 4151307
    [No Abstract]   [Full Text] [Related]  

  • 20. ACTION OF OXIMASE IN GREEN ALGAE.
    HATANO S; YAMAFUJI K
    Enzymologia; 1964 Nov; 27():360-8. PubMed ID: 14239731
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.