These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 4289584)

  • 21. Spectral and photochemical properties of subchromatophore fractions derived from carotenoid-deficient Chromatium by triton treatment.
    Ke B; Chaney TH
    Biochim Biophys Acta; 1971 Mar; 226(2):341-53. PubMed ID: 5575163
    [No Abstract]   [Full Text] [Related]  

  • 22. [Functional organization of the electron transport chain of Rhodospirillum rubrum chromatophores in the absence of an exogenous electron donor].
    RatynÄ­ AI; Riznichenko GIu; ChamorovskiÄ­ SK; Vorob'eva TN; Pyt'eva NF
    Biofizika; 1979; 24(4):671-5. PubMed ID: 113038
    [No Abstract]   [Full Text] [Related]  

  • 23. The function of ubiquinone-10 both in the electron transport system and in the energy conservation system of chromatophores from Rhodospirillum rubrum.
    Yamamoto N; Hatakeyama H; Nishikawa K; Horio T
    J Biochem; 1970 Apr; 67(4):587-98. PubMed ID: 5453049
    [No Abstract]   [Full Text] [Related]  

  • 24. Some structural and photochemical properties of Rhodopseudomonas palustris subchromatophore particles obtained by treatment with Triton X-100.
    Garcia A; Vernon LP; Ke B; Mollenhauer H
    Biochemistry; 1968 Jan; 7(1):319-25. PubMed ID: 5758549
    [No Abstract]   [Full Text] [Related]  

  • 25. Light-induced dark [32P]adenosine triphosphate formation by Rhodospirillum rubrum chromatophores. Adenosine triphosphate-inorganic phosphate exchange activity.
    Zaugg WS; Vernon LP
    Biochemistry; 1966 Jan; 5(1):34-40. PubMed ID: 5938951
    [No Abstract]   [Full Text] [Related]  

  • 26. Inorganic pyrophosphate and ATP as energy donors in chromatophores from Rhodospirillum rubrum.
    Baltscheffsky M
    Nature; 1967 Oct; 216(5112):241-3. PubMed ID: 4293681
    [No Abstract]   [Full Text] [Related]  

  • 27. [Morphogenesis of the photosynthetic apparatus in Rhodospirillum rubrum. I. Isolation and characterization of two membrane systems].
    Oelze J; Biedermann M; Drews G
    Biochim Biophys Acta; 1969 Apr; 173(3):436-7. PubMed ID: 4976894
    [No Abstract]   [Full Text] [Related]  

  • 28. [Shifts of the bacteriochlorophyll absorption band at 880 nm in chromatophores and subchromatophore pigment-protein complexes from Rhodospirillum rubrum].
    BarskiÄ­ EL; Samuilov VD
    Biokhimiia; 1979 Oct; 44(10):1805-13. PubMed ID: 41599
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Light-induced oxygen uptake by chromatophores and subchromatophore pigment-protein complexes of Rhodospirillum rubrum].
    Remennikov VG; Samuilov VD
    Biokhimiia; 1977 Nov; 42(11):1997-2004. PubMed ID: 412525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conversion of biomembrane-produced energy into electric form. 3. Chromatophores of Rhodospirillum rubrum.
    Isaev PI; Liberman EA; Samuilov VD; Skulachev VP; Tsofina LM
    Biochim Biophys Acta; 1970 Aug; 216(1):22-9. PubMed ID: 4322294
    [No Abstract]   [Full Text] [Related]  

  • 31. Role of bound ADP in photosynthetic ATP formation by chromatophores from Rhodospirillum rubrum.
    Yammamoto N; Yoshimura S; Higuti T; Nishikawa K; Horio T
    J Biochem; 1972 Dec; 72(6):1397-406. PubMed ID: 4198252
    [No Abstract]   [Full Text] [Related]  

  • 32. Kinetics of the fluorescence change and P8 70 bleaching in chromatophores from Rhodospirillum rubrum.
    Malkin S; Silberstein B
    Biochim Biophys Acta; 1972 Sep; 275(3):369-82. PubMed ID: 4627084
    [No Abstract]   [Full Text] [Related]  

  • 33. INTERACTION OF PHOTOPHOSPHORYLATION AND ELECTRON TRANSPORT SYSTEMS IN BACTERIAL CHROMATOPHORES.
    NEWTON JW
    J Biol Chem; 1964 Sep; 239():3038-42. PubMed ID: 14217893
    [No Abstract]   [Full Text] [Related]  

  • 34. Quantitative dissolution of the membrane and preparation of photoreceptor subunits from Rhodospirillum rubrum.
    Loach PA; Hadsell RM; Sekura DL; Stemer A
    Biochemistry; 1970 Aug; 9(16):3127-35. PubMed ID: 4321367
    [No Abstract]   [Full Text] [Related]  

  • 35. Electron and proton transport in Rhodospirillum rubrum chromatophores.
    Kakuno T; Hosoi K; Higuti T; Horio T
    J Biochem; 1973 Dec; 74(6):1193-203. PubMed ID: 4360811
    [No Abstract]   [Full Text] [Related]  

  • 36. Some structural and photochemical properties of Rhodopseudomonas species NHTC 133 subchromatophore particles obtained by treatment with Triton X-100.
    Garcia A; Vernon LP; Ke B; Mollenhauer H
    Biochemistry; 1968 Jan; 7(1):326-32. PubMed ID: 5758550
    [No Abstract]   [Full Text] [Related]  

  • 37. On the relationship of the energy-linked transhydrogenase to energy-linked NAD+ reduction in Rhodospirillum rubrum.
    Thomas JO; Fisher RR; Guillory RJ
    Biochim Biophys Acta; 1970 Nov; 223(1):204-6. PubMed ID: 4320756
    [No Abstract]   [Full Text] [Related]  

  • 38. Light-induced absorption changes in Chromatium subchromatophore particles exhaustively extracted with non-polar solvents.
    Ke B; Garcia AF; Vernon LP
    Biochim Biophys Acta; 1973 Jan; 292(1):226-36. PubMed ID: 4705132
    [No Abstract]   [Full Text] [Related]  

  • 39. Effect of diqiuat (1,1'-ethylene-2,2'-dipyridylium dibromide) on the formation and photoreactions of chromatophores from Rhodospirillum rubrum.
    Kaneshiro T; Zweig G
    Biochim Biophys Acta; 1966 Oct; 126(2):225-33. PubMed ID: 5971848
    [No Abstract]   [Full Text] [Related]  

  • 40. Light-induced electron transport in Chromatium strain D. I. Isolation and characterization of Chromatium chromatophores.
    Cusanovich MA; Kamen MD
    Biochim Biophys Acta; 1968 Feb; 153(2):376-96. PubMed ID: 4296024
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.