These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 4289778)

  • 1. The catalytic properties of tyrosyl ribonucleic acid synthetases from Escherichia coli and Bacillus subtilis.
    Calendar R; Berg P
    Biochemistry; 1966 May; 5(5):1690-5. PubMed ID: 4289778
    [No Abstract]   [Full Text] [Related]  

  • 2. Purification and physical characterization of tyrosyl ribonucleic acid synthetases from Escherichia coli and Bacillus subtilis.
    Calendar R; Berg P
    Biochemistry; 1966 May; 5(5):1681-90. PubMed ID: 4960133
    [No Abstract]   [Full Text] [Related]  

  • 3. Selective inhibition of aminoacyl ribonucleic acid synthetases by aminoalkyl adenylates.
    Cassio D; Lemoine F; Waller JP; Sandrin E; Boissonnas RA
    Biochemistry; 1967 Mar; 6(3):827-36. PubMed ID: 4290596
    [No Abstract]   [Full Text] [Related]  

  • 4. D-Tyrosyl RNA: formation, hydrolysis and utilization for protein synthesis.
    Calendar R; Berg P
    J Mol Biol; 1967 May; 26(1):39-54. PubMed ID: 4292198
    [No Abstract]   [Full Text] [Related]  

  • 5. Studies on amino-acyl-tRNA synthetases from Pseudomonase aeruginosa. II. Properties of leucyl-, and tyrosyl-tRNA synthetases.
    Kaziro Y; Takahashi Y; Inoue N
    J Biochem; 1968 Aug; 64(2):181-8. PubMed ID: 4974343
    [No Abstract]   [Full Text] [Related]  

  • 6. The specificity of enzymic reactions. Aminoacyl-soluble RNA ligases.
    Loftfield RB; Eigner EA
    Biochim Biophys Acta; 1966 Dec; 130(2):426-48. PubMed ID: 4291467
    [No Abstract]   [Full Text] [Related]  

  • 7. Isoleucyl transfer ribonucleic acid synthetase. The role of magnesium in amino acid activation.
    Cole FX; Schimmel PR
    Biochemistry; 1970 Aug; 9(16):3143-8. PubMed ID: 4321368
    [No Abstract]   [Full Text] [Related]  

  • 8. [Dissociation of 2 enzymatic activities from isoleucyl-ribonucleic acid synthetase of "Bacillus stearothermophilus"].
    Charlier J; Grosjean H
    Arch Int Physiol Biochim; 1966 Nov; 74(5):914-5. PubMed ID: 4165990
    [No Abstract]   [Full Text] [Related]  

  • 9. Studies on valyl-tRNA synthetase and tRNA from Escherichia coli. 3. Valyl-tRNA synthetases from thermosensitive mutants of Escherichia coli.
    Yaniv M; Gros F
    J Mol Biol; 1969 Aug; 44(1):31-45. PubMed ID: 4897804
    [No Abstract]   [Full Text] [Related]  

  • 10. Human tryptophanyl transfer ribonucleic acid synthetase. Comparison of the kinetic mechanism to that of the Escherichia coli tryptophanyl transfer ribonucleic acid synthetase.
    Penneys NS; Muench KH
    Biochemistry; 1974 Jan; 13(3):566-71. PubMed ID: 4358952
    [No Abstract]   [Full Text] [Related]  

  • 11. The role of transfer ribonucleic acid in the pyrophsphate exchange reaction of arginine-transfer ribonucleic acid synthetase.
    Mitra K; Mehler AH
    J Biol Chem; 1966 Nov; 241(21):5161-2. PubMed ID: 4288729
    [No Abstract]   [Full Text] [Related]  

  • 12. Properties of transfer ribonucleic acid and aminoacyl transfer ribonucleic acid synthetases from an extremely halophilic bacterium.
    Griffiths E; Bayley ST
    Biochemistry; 1969 Feb; 8(2):541-51. PubMed ID: 4893575
    [No Abstract]   [Full Text] [Related]  

  • 13. The catalytic mechanism of glutamyl-tRNA synthetase of Escherichia coli. Evidence for a two-step aminoacylation pathway, and study of the reactivity of the intermediate complex.
    Kern D; Lapointe J
    Eur J Biochem; 1980 May; 106(1):137-50. PubMed ID: 6280993
    [No Abstract]   [Full Text] [Related]  

  • 14. On the rate law and mechanism of the adenosine triphosphate--pyrophosphate isotope exchange reaction of amino acyl transfer ribonucleic acid synthetases.
    Cole FX; Schimmel PR
    Biochemistry; 1970 Feb; 9(3):480-9. PubMed ID: 4313472
    [No Abstract]   [Full Text] [Related]  

  • 15. Properties of xanthosine 5'-monophosphate-amidotransferase from Escherichia coli.
    Patel N; Moyed HS; Kane JF
    Arch Biochem Biophys; 1977 Jan; 178(2):652-61. PubMed ID: 189701
    [No Abstract]   [Full Text] [Related]  

  • 16. Chloroquine and synthesis of aminoacyl transfer ribonucleic acids. Tryptophanyl transfer ribonucleic acid synthetase of Escherichia coli and tryptophanyladenosine triphosphate formation.
    Muench KH
    Biochemistry; 1969 Dec; 8(12):4872-9. PubMed ID: 4312458
    [No Abstract]   [Full Text] [Related]  

  • 17. Patterns of oxygen interchange between water, substrates, and phosphate compounds of Escherichia coli and Bacillus subtilis.
    Chaney SG; Duffy JJ; Boyer PD
    J Biol Chem; 1972 Apr; 247(7):2145-50. PubMed ID: 4622742
    [No Abstract]   [Full Text] [Related]  

  • 18. Specificity of aminoacyl transfer ribonucleic acid synthetases from Escherichia coli K12.
    Kondo M; Woese CR
    Biochemistry; 1969 Oct; 8(10):4177-82. PubMed ID: 4899584
    [No Abstract]   [Full Text] [Related]  

  • 19. Role of the beta-phosphate-gamma-phosphate interchange reaction of adenosine triphosphate in amino acid discrimination by valyl- and methionyl-tRNA synthetases from Escherichia coli.
    Smith LT; Cohn M
    Biochemistry; 1981 Jan; 20(2):385-91. PubMed ID: 6258639
    [No Abstract]   [Full Text] [Related]  

  • 20. Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. Effect of alteration of the 5-(methylaminomethyl)-2-thiouridine in the anticodon of glutamic acid transfer ribonucleic acid on the catalytic mechanism.
    Kern D; Lapointe J
    Biochemistry; 1979 Dec; 18(26):5819-26. PubMed ID: 229902
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.