These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 4290596)

  • 21. Phenylalanyl transfer ribonucleic acid synthetase from Escherichia coli. Analysis of the adenosine triphosphate binding site.
    Santi DV; Danenberg PV; Montgomery KA
    Biochemistry; 1971 Dec; 10(25):4821-4. PubMed ID: 4334587
    [No Abstract]   [Full Text] [Related]  

  • 22. Ligand binding stoichiometries, subunit structure, and slow transitions in aminoacyl-tRNA synthetases.
    Mulvey RS; Fersht AR
    Biochemistry; 1977 Sep; 16(18):4005-13. PubMed ID: 199234
    [No Abstract]   [Full Text] [Related]  

  • 23. Regulation of glutamine synthetase. 8. ATP: glutamine synthetase adenylyltransferase, an enzyme that catalyzes alterations in the regulatory properties of glutamine synthetase.
    Kingdon HS; Shapiro BM; Stadtman ER
    Proc Natl Acad Sci U S A; 1967 Oct; 58(4):1703-10. PubMed ID: 4867671
    [No Abstract]   [Full Text] [Related]  

  • 24. Specificity of the valyl ribonucleic acid synthetase from Escherichia coli in the binding of valine analogues.
    Owens SL; Bell FE
    J Biol Chem; 1970 Nov; 245(21):5515-23. PubMed ID: 4319560
    [No Abstract]   [Full Text] [Related]  

  • 25. PROTEIN AND NUCLEIC ACID SYNTHESIS IN TWO MUTANTS OF ESCHERICHIA COLI WITH TEMPERATURE-SENSITIVE AMINOACYL RIBONUCLEIC ACID SYNTHETASES.
    EIDLIC L; NEIDHARDT FC
    J Bacteriol; 1965 Mar; 89(3):706-11. PubMed ID: 14273649
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the mechanism of the polynucleotide joining reaction.
    Olivera BM; Hall ZW; Anraku Y; Chien JR; Lehman IR
    Cold Spring Harb Symp Quant Biol; 1968; 33():27-34. PubMed ID: 4306816
    [No Abstract]   [Full Text] [Related]  

  • 27. Biosynthesis of the peptidoglycan of bacterial cell walls. IX. Purification and properties of glycyl transfer ribonucleic acid synthetase from Staphylococcus aureus.
    Niyomporn B; Dahl JL; Strominger JL
    J Biol Chem; 1968 Feb; 243(4):773-8. PubMed ID: 4295604
    [No Abstract]   [Full Text] [Related]  

  • 28. Human tryptophanyl transfer ribonucleic acid synthetase. Comparison of the kinetic mechanism to that of the Escherichia coli tryptophanyl transfer ribonucleic acid synthetase.
    Penneys NS; Muench KH
    Biochemistry; 1974 Jan; 13(3):566-71. PubMed ID: 4358952
    [No Abstract]   [Full Text] [Related]  

  • 29. Kinetic studies of the prolyl transfer ribonucleic acid synthetase of Escherichia coli. Order of addition of substrates and release of products.
    Papas TS; Mehler AH
    J Biol Chem; 1971 Oct; 246(19):5924-8. PubMed ID: 4330060
    [No Abstract]   [Full Text] [Related]  

  • 30. Tyrocidine biosynthesis by three complementary fractions from Bacillus brevis (ATCC 8185).
    Roskoski R; Gevers W; Kleinkauf H; Lipmann F
    Biochemistry; 1970 Dec; 9(25):4839-45. PubMed ID: 4320358
    [No Abstract]   [Full Text] [Related]  

  • 31. THE SEPARATION AND PARTIAL PURIFICATION OF AMINOACYL-RNA SYNTHETASES FROM ESCHERICHIA COLI.
    MCCORQUODALE DJ
    Biochim Biophys Acta; 1964 Dec; 91():541-8. PubMed ID: 14262440
    [No Abstract]   [Full Text] [Related]  

  • 32. On the active site topography of isoleucyl transfer ribonucleic acid synthetase of Escherichia coli B.
    Holler E; Rainey P; Orme A; Bennett EL; Calvin M
    Biochemistry; 1973 Mar; 12(6):1150-9. PubMed ID: 4347457
    [No Abstract]   [Full Text] [Related]  

  • 33. Chemical modification of aminoacyl ligases and the effect on formation of aminoacyl-tRNA.
    Haines JA; Zamecnik PC
    Biochim Biophys Acta; 1967 Sep; 146(1):227-38. PubMed ID: 4293964
    [No Abstract]   [Full Text] [Related]  

  • 34. Mechanism of action of amino acid transfer ribonucleic acid ligases.
    Loftfield RB; Eigner EA
    J Biol Chem; 1969 Apr; 244(7):1746-54. PubMed ID: 4305463
    [No Abstract]   [Full Text] [Related]  

  • 35. Flip-flop mechanisms in enzymology. A model: the alkaline phosphatase of Escherichia coli.
    Lazdunski M; Petitclerc C; Chappelet D; Lazdunski C
    Eur J Biochem; 1971 May; 20(1):124-39. PubMed ID: 4325354
    [No Abstract]   [Full Text] [Related]  

  • 36. Isolation and stoichiometry of beef pancreas tryptophanyl-tRNA synthetase complexes with tryptophan and tryptophanyladenylate.
    Dorizzi M; Labouesse B; Labouesse J
    Eur J Biochem; 1971 Apr; 19(4):563-72. PubMed ID: 4325351
    [No Abstract]   [Full Text] [Related]  

  • 37. Studies on the mechanism of ribonucleic acid synthesis. II. Stabilization of the deoxyribonucleic acid-ribonucleic acid polymerase complex by the formation of a single phosphodiester bond.
    So AG; Downey KM
    Biochemistry; 1970 Nov; 9(24):4788-93. PubMed ID: 4320541
    [No Abstract]   [Full Text] [Related]  

  • 38. A temperature-induced lesion in amino acid-transfer ribonucleic acid attachment in a psychrophile.
    Malcolm NL
    Biochim Biophys Acta; 1968 May; 157(3):493-503. PubMed ID: 4298996
    [No Abstract]   [Full Text] [Related]  

  • 39. [Tyrosyl-tRNA synthetase of Escherichia coli. 1. Study of the complexes tyrosyl-AMP:enzyme and tyrosinyl-AMP:enzyme].
    Chousterman S; Sonino F; Stone N; Chapeville F
    Eur J Biochem; 1968 Oct; 6(1):8-14. PubMed ID: 4302734
    [No Abstract]   [Full Text] [Related]  

  • 40. The biosynthesis of folic acid. IX. Purification and properties of the enzymes required for the formation of dihydropteroic acid.
    Richey DP; Brown GM
    J Biol Chem; 1969 Mar; 244(6):1582-92. PubMed ID: 4304228
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.