These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 42910)

  • 21. Glucose: a more powerful modulator of fructose 2,6-bisphosphate levels than insulin in human hepatocytes.
    López MP; Gómez-Lechón MJ; Castell JV
    Biochim Biophys Acta; 1991 Sep; 1094(2):200-6. PubMed ID: 1892901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition by fructose 1,6-bisphosphate of transaldolase from Escherichia coli.
    Ogawa T; Murakami K; Yoshino M
    FEMS Microbiol Lett; 2016 Sep; 363(17):. PubMed ID: 27481705
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increased hepatic fructose 2,6-bisphosphate after an oral glucose load does not affect gluconeogenesis.
    Jin ES; Uyeda K; Kawaguchi T; Burgess SC; Malloy CR; Sherry AD
    J Biol Chem; 2003 Aug; 278(31):28427-33. PubMed ID: 12764148
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gluconeogenesis during hypoxia in vascular smooth muscle studied by 13C-NMR.
    Hardin CD; Roberts TM
    Physiol Res; 1995; 44(4):257-60. PubMed ID: 8789645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of ethanol on Saccharomyces cerevisiae as monitored by in vivo 31P and 13C nuclear magnetic resonance.
    Loureiro-Dias MC; Santos H
    Arch Microbiol; 1990; 153(4):384-91. PubMed ID: 2186713
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Saccharomyces cerevisiae aldolase mutants.
    Lobo Z
    J Bacteriol; 1984 Oct; 160(1):222-6. PubMed ID: 6384192
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Futile cycling of glycogen in Fibrobacter succinogenes as shown by in situ 1H-NMR and 13C-NMR investigation.
    Gaudet G; Forano E; Dauphin G; Delort AM
    Eur J Biochem; 1992 Jul; 207(1):155-62. PubMed ID: 1628646
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative study of the effects of amphotericin B on the glucose metabolism in Saccharomyces cerevisiae in K(+)- and Na(+)-rich media.
    Wietzerbin J; Herve M; Lebourguais O; Tran-Dinh S
    Biochim Biophys Acta; 1992 Aug; 1136(2):105-12. PubMed ID: 1324008
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fructose 2,6-bisphosphate activates pyrophosphate: fructose-6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells.
    Fernie AR; Roscher A; Ratcliffe RG; Kruger NJ
    Planta; 2001 Jan; 212(2):250-63. PubMed ID: 11216846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of 2-deoxy-D-glucose on the glucose metabolism in Saccharomyces cerevisiae studied by multinuclear-NMR spectroscopy and biochemical methods.
    Hervé M; Wietzerbin J; Lebourguais O; Tran-Dinh S
    Biochimie; 1992 Dec; 74(12):1103-15. PubMed ID: 1363373
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of recombinant cytokines on glycolysis and fructose 2,6-bisphosphate in rheumatoid synovial cells in vitro.
    Taylor DJ; Whitehead RJ; Evanson JM; Westmacott D; Feldmann M; Bertfield H; Morris MA; Woolley DE
    Biochem J; 1988 Feb; 250(1):111-5. PubMed ID: 3128273
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon isotope effects on the fructose-1,6-bisphosphate aldolase reaction, origin for non-statistical 13C distributions in carbohydrates.
    Gleixner G; Schmidt HL
    J Biol Chem; 1997 Feb; 272(9):5382-7. PubMed ID: 9038136
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure of the neutral form of fructose 1,6-bisphosphatase complexed with regulatory inhibitor fructose 2,6-bisphosphate at 2.6-A resolution.
    Liang JY; Huang S; Zhang Y; Ke H; Lipscomb WN
    Proc Natl Acad Sci U S A; 1992 Mar; 89(6):2404-8. PubMed ID: 1312721
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 31P NMR saturation-transfer measurements in Saccharomyces cerevisiae: characterization of phosphate exchange reactions by iodoacetate and antimycin A inhibition.
    Campbell-Burk SL; Jones KA; Shulman RG
    Biochemistry; 1987 Nov; 26(23):7483-92. PubMed ID: 3322400
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiological relevance of fructose 2,6-bisphosphate in the regulation of spinach leaf pyrophosphate:fructose 6-phosphate 1-phosphotransferase.
    Theodorou ME; Kruger NJ
    Planta; 2001 May; 213(1):147-57. PubMed ID: 11523651
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 13C nuclear magnetic resonance study of trehalose mobilization in yeast spores.
    Barton JK; Den Hollander JA; Hopfield JJ; Shulman RG
    J Bacteriol; 1982 Jul; 151(1):177-85. PubMed ID: 7085557
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Products of Leishmania braziliensis glucose catabolism: release of D-lactate and, under anaerobic conditions, glycerol.
    Darling TN; Davis DG; London RE; Blum JJ
    Proc Natl Acad Sci U S A; 1987 Oct; 84(20):7129-33. PubMed ID: 3478686
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of fructose 2,6-bisphosphate in the stimulation of glycolysis by anoxia in isolated hepatocytes.
    Hue L
    Biochem J; 1982 Aug; 206(2):359-65. PubMed ID: 6216883
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of the fructose 6-phosphate/fructose 2,6-bisphosphate cycle by sn-glycerol 3-phosphate.
    Frenzel J; Schellenberger W; Eschrich K; Hofmann E
    Biomed Biochim Acta; 1988; 47(6):461-70. PubMed ID: 2853625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of glycolysis by 5-amino-4-imidazolecarboxamide riboside in isolated rat hepatocytes.
    Vincent MF; Bontemps F; Van den Berghe G
    Biochem J; 1992 Jan; 281 ( Pt 1)(Pt 1):267-72. PubMed ID: 1531010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.