These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 42910)
41. Nuclear magnetic resonance studies of carbohydrate metabolism and substrate cycling in Fasciola hepatica. Matthews PM; Foxall D; Shen L; Mansour TE Mol Pharmacol; 1986 Jan; 29(1):65-73. PubMed ID: 3945228 [TBL] [Abstract][Full Text] [Related]
42. The cooperative binding of fructose-1,6-bisphosphate to yeast pyruvate kinase. Murcott TH; Gutfreund H; Muirhead H EMBO J; 1992 Nov; 11(11):3811-4. PubMed ID: 1396575 [TBL] [Abstract][Full Text] [Related]
43. Evidence for dissociation of gluconeogenesis stimulated by non-esterified fatty acids and changes in fructose 2,6-bisphosphate in cultured rat hepatocytes. Clore JN; Stillman JS; Helm ST; Blackard WG Biochem J; 1992 Nov; 288 ( Pt 1)(Pt 1):145-8. PubMed ID: 1445259 [TBL] [Abstract][Full Text] [Related]
44. Regulation of glycolysis during acclimation of scallops (Patinopecten yessoensis Jay) to anaerobiosis. Enomoto T; Nakao C; Ohyama H Comp Biochem Physiol B Biochem Mol Biol; 2000 Sep; 127(1):45-52. PubMed ID: 11126751 [TBL] [Abstract][Full Text] [Related]
45. Metabolism of exogenously applied fructose 1,6-bisphosphate in hypoxic vascular smooth muscle. Hardin CD; Roberts TM Am J Physiol; 1994 Dec; 267(6 Pt 2):H2325-32. PubMed ID: 7810732 [TBL] [Abstract][Full Text] [Related]
46. A convenient method for the preparation of a variety of 13C-substituted D-fructose phosphates using readily available enzymes of the glycolytic pathway. Kuan KT; Weber DS; Sottile L; Goux WJ Carbohydr Res; 1992 Feb; 225(1):123-36. PubMed ID: 1633598 [TBL] [Abstract][Full Text] [Related]
47. [Pathways of inclusion of isotopes 2H and 13C into exometabolites in course of glucose utilization by medusomycete]. Iurkevich DI; Kutyshenko VP Biofizika; 2001; 46(3):445-51. PubMed ID: 11449543 [TBL] [Abstract][Full Text] [Related]
48. Triosephosphates as Intermediates of the Crabtree Effect. Sokolov SS; Markova OV; Nikolaeva KD; Fedorov IA; Severin FF Biochemistry (Mosc); 2017 Apr; 82(4):458-464. PubMed ID: 28371603 [TBL] [Abstract][Full Text] [Related]
49. Vanadate activates pentose phosphate pathway and glycolysis, and raises fructose 2,6-bisphosphate concentration in slices of lactating rat mammary gland. Sochor M; Kunjara S; Sumathy K; el Hassan T; Greenbaum AL Biochem Int; 1991 Aug; 24(6):1111-8. PubMed ID: 1781790 [TBL] [Abstract][Full Text] [Related]
51. In vivo 31P nuclear magnetic resonance saturation transfer measurements of phosphate exchange reactions in the yeast Saccharomyces cerevisiae. Campbell SL; Jones KA; Shulman RG FEBS Lett; 1985 Dec; 193(2):189-93. PubMed ID: 3905437 [TBL] [Abstract][Full Text] [Related]
52. Alterations in 32P-labelled intermediates during flux activation of human platelet glycolysis. Akkerman JW; Driver HA; Dangelmaier CA; Holmsen H Biochim Biophys Acta; 1984 Nov; 802(2):221-8. PubMed ID: 6437451 [TBL] [Abstract][Full Text] [Related]
53. Mechanism of inhibition of acid production in Streptococcus mutans by sodium ions under strictly anaerobic conditions. Iwami Y; Guha-Chowdhury N; Yamada T Oral Microbiol Immunol; 1997 Jun; 12(3):178-82. PubMed ID: 9467405 [TBL] [Abstract][Full Text] [Related]
54. In vivo regulation of monomer-tetramer conversion of pyruvate kinase subtype M2 by glucose is mediated via fructose 1,6-bisphosphate. Ashizawa K; Willingham MC; Liang CM; Cheng SY J Biol Chem; 1991 Sep; 266(25):16842-6. PubMed ID: 1885610 [TBL] [Abstract][Full Text] [Related]
55. Dinuclear copper(II) complexes with {Cu2(mu-hydroxo)bis(mu-carboxylato)}+ cores and their reactions with sugar phosphate esters: A substrate binding model of fructose-1,6-bisphosphatase. Kato M; Tanase T; Mikuriya M Inorg Chem; 2006 Apr; 45(7):2925-41. PubMed ID: 16562948 [TBL] [Abstract][Full Text] [Related]
56. 31P nuclear magnetic resonance studies of bioenergetics and glycolysis in anaerobic Escherichia coli cells. Ugurbil K; Rottenberg H; Glynn P; Shulman RG Proc Natl Acad Sci U S A; 1978 May; 75(5):2244-8. PubMed ID: 27785 [TBL] [Abstract][Full Text] [Related]
57. A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. de Koning W; van Dam K Anal Biochem; 1992 Jul; 204(1):118-23. PubMed ID: 1514678 [TBL] [Abstract][Full Text] [Related]
58. Non-cooperative effects of glucose and 2-deoxyglucose on their metabolism in Saccharomyces cerevisiae studied by 1H-NMR and 13C-NMR spectroscopy. Herve M; Wietzerbin J; Tran-Dinh S Eur J Biochem; 1993 Nov; 218(1):221-8. PubMed ID: 8243467 [TBL] [Abstract][Full Text] [Related]
59. In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis. Neves AR; Ramos A; Nunes MC; Kleerebezem M; Hugenholtz J; de Vos WM; Almeida J; Santos H Biotechnol Bioeng; 1999 Jul; 64(2):200-12. PubMed ID: 10397856 [TBL] [Abstract][Full Text] [Related]
60. The role of glycolysis-derived hexose phosphates in the induction of the Crabtree effect. Rosas Lemus M; Roussarie E; Hammad N; Mougeolle A; Ransac S; Issa R; Mazat JP; Uribe-Carvajal S; Rigoulet M; Devin A J Biol Chem; 2018 Aug; 293(33):12843-12854. PubMed ID: 29907566 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]