These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 4291316)

  • 21. [Regulation of the production and utilization of monophosphate nucleosides during the growth cycle in B. subtilis].
    Senesi S; Felicioli RA; Ipata PL; Falcone G
    Boll Ist Sieroter Milan; 1973; 52(2):150-6. PubMed ID: 4356128
    [No Abstract]   [Full Text] [Related]  

  • 22. Genetically altered repression pattern of purine nucleotide synthesizing enzymes and inosine production in 8-azaguanine resistant mutants of Bacillus subtilis.
    Shiio I; Ishii K
    J Biochem; 1971 Feb; 69(2):339-47. PubMed ID: 4994526
    [No Abstract]   [Full Text] [Related]  

  • 23. High performance liquid chromatography analysis of hypoxanthine metabolism in mouse oocyte-cumulus cell complexes: effects of purine metabolic perturbants.
    Downs SM
    Biol Reprod; 1994 Jun; 50(6):1403-12. PubMed ID: 8080928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia.
    Hagberg H; Andersson P; Lacarewicz J; Jacobson I; Butcher S; Sandberg M
    J Neurochem; 1987 Jul; 49(1):227-31. PubMed ID: 3585332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A pleiotropic mutation affecting purine metabolism in Bacillus subtilis.
    Maznitsa II; Nudler AA; Bourd GI
    FEMS Microbiol Lett; 1990 Oct; 60(1-2):173-6. PubMed ID: 2126515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel mechanism of mycophenolic acid resistance in the protozoan parasite Tritrichomonas foetus.
    Hedstrom L; Cheung KS; Wang CC
    Biochem Pharmacol; 1990 Jan; 39(1):151-60. PubMed ID: 1967525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Directed evolution of adenylosuccinate synthetase from Bacillus subtilis and its application in metabolic engineering.
    Wang X; Wang G; Li X; Fu J; Chen T; Wang Z; Zhao X
    J Biotechnol; 2016 Aug; 231():115-121. PubMed ID: 27234879
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Altered deoxyribonucleic acid polymerase activity in a methyl methanesulfonate-sensitive mutant of Bacillus subtilis.
    Gass KB; Hill TC; Goulian M; Strauss BS; Cozzarelli NR
    J Bacteriol; 1971 Oct; 108(1):364-74. PubMed ID: 4330738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of inosine 5'-phosphate in activating glucose-bisphosphatase.
    Guha SK; Rose ZB
    Biochemistry; 1983 Mar; 22(6):1356-61. PubMed ID: 6301545
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ANTAGONISM BETWEEN PURINES IN PURINE-REQUIRING BACILLUS SUBTILIS MUTANTS.
    GUTHRIE R; LU WC
    Arch Biochem Biophys; 1964 Dec; 108():398-402. PubMed ID: 14244678
    [No Abstract]   [Full Text] [Related]  

  • 31. Pathway of purine nucleotide synthesis in Bacillus subtilis.
    Nishikawa H; Momose H; Shiio I
    J Biochem; 1968 Feb; 63(2):149-55. PubMed ID: 4970231
    [No Abstract]   [Full Text] [Related]  

  • 32. Teichoic acid hydrolase activity in soil bacteria (Bacillus subtilis-sporulation-phosphodiesterase-polyamines-concanavalin A).
    Wise EM; Glickman RS; Teimer E
    Proc Natl Acad Sci U S A; 1972 Jan; 69(1):233-7. PubMed ID: 4333041
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Effect of addition of bases and amino acids on inosine biosynthesis by mutants of Bacillus subtilis].
    Kazarinova LA; Lukin NS
    Prikl Biokhim Mikrobiol; 1976; 12(1):59-67. PubMed ID: 825851
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzymatic excision of free hypoxanthine from polydeoxynucleotides and DNA containing deoxyinosine monophosphate residues.
    Karran P; Lindahl T
    J Biol Chem; 1978 Sep; 253(17):5877-9. PubMed ID: 98523
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of a novel phosphatase with high affinity for nucleotides monophosphate from common bean (Phaseolus vulgaris).
    Cabello-Díaz JM; Quiles FA; Lambert R; Pineda M; Piedras P
    Plant Physiol Biochem; 2012 Apr; 53():54-60. PubMed ID: 22322249
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inosine 5'-monophosphate vs inosine and hypoxanthine as substrates for purine salvage in human lymphoid cells.
    Thompson LF
    Proc Soc Exp Biol Med; 1985 Sep; 179(4):432-6. PubMed ID: 2991937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of inorganic phosphate on hypoxanthine transport in isolated brain microvessels.
    Cardelli P; Fiori A; Santulli MC; Ceci F; Salerno C; Savi MR; Peresempio V; Strom R
    Biochem Int; 1992 Dec; 28(5):823-34. PubMed ID: 1363191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification, Heterologous Expression, and Functional Characterization of Bacillus subtilis YutF, a HAD Superfamily 5'-Nucleotidase with Broad Substrate Specificity.
    Zakataeva NP; Romanenkov DV; Yusupova YR; Skripnikova VS; Asahara T; Gronskiy SV
    PLoS One; 2016; 11(12):e0167580. PubMed ID: 27907199
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Exogenous orthophosphate regulation of the phosphohydrolase activities of Pseudomonas aeruginosa and Pseudomonas maltophilia].
    Treshchanina NA; Nesmeianova MA; Zhdan-Pushkina SM
    Mikrobiologiia; 1981; 50(6):996-1001. PubMed ID: 6276704
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutation of an inosine-producing strain of Bacillus subtilis to DL-methionine sulfoxide resistance for guanosine production.
    Matsui H; Sato K; Enei H; Hirose Y
    Appl Environ Microbiol; 1977 Oct; 34(4):337-41. PubMed ID: 21611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.