These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 4291316)

  • 41. The effect of nutritional state and allopurinol on nucleotide formation in enterocytes from the guinea pig small intestine.
    Gross CJ; Savaiano DA
    Biochim Biophys Acta; 1991 Mar; 1073(2):260-7. PubMed ID: 2009279
    [TBL] [Abstract][Full Text] [Related]  

  • 42. ANTAGONISM BY PURINES AND DERIVATIVES IN THE NUTRITION OF A BACILLUS SUBTILIS MUTANT.
    DEMAIN AL
    Arch Biochem Biophys; 1964 Dec; 108():403-8. PubMed ID: 14244679
    [No Abstract]   [Full Text] [Related]  

  • 43. Nucleotides, nucleosides, and oxypurines in human kidneys measured by use of reversed-phase high-performance liquid chromatography.
    Maessen JG; van der Vusse GJ; Vork M; Kootstra G
    Clin Chem; 1988 Jun; 34(6):1087-90. PubMed ID: 3288373
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Release of adenosine, inosine and hypoxanthine from rabbit non-myelinated nerve fibres at rest and during activity.
    Maire JC; Medilanski J; Straub RW
    J Physiol; 1984 Dec; 357():67-77. PubMed ID: 6512706
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Regulation of extracellular phosphohydrolase biosynthesis in bacilli].
    Morozova OV; Vershinina OA; Vershinina VI; Leshchinskaia IB; Znamenskaia LV
    Mol Gen Mikrobiol Virusol; 2001; (2):13-9. PubMed ID: 11449794
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biochemical and functional effects of nucleoside transport inhibition in the isolated cat heart.
    Van Belle H; Goossens F; Wynants J
    J Mol Cell Cardiol; 1989 Aug; 21(8):797-805. PubMed ID: 2778816
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of the specificity of intracellular phosphodiesterases in Bacillus subtilis.
    Felicioli RA; Ipata PL; Senesi S; Falcone G
    Biochim Biophys Acta; 1972 Aug; 276(2):584-7. PubMed ID: 4341592
    [No Abstract]   [Full Text] [Related]  

  • 48. Dependence of diaminopurine utilization on the mutational site of purine auxotrophy in Bacillus subtilis. II. Tracer experiments.
    Shigeura HT; Demain AL
    J Bacteriol; 1968 Feb; 95(2):572-7. PubMed ID: 4966551
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of levels of purine biosynthetic enzymes in Bacillus subtilis: effects of changing purine nucleotide pools.
    Saxild HH; Nygaard P
    J Gen Microbiol; 1991 Oct; 137(10):2387-94. PubMed ID: 1722815
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dependence of diaminopurine utilization on the mutational site of purine auxotrophy in Bacillus subtilis. 1. Nutritional experiments.
    Demain AL; Shigeura HT
    J Bacteriol; 1968 Feb; 95(2):565-71. PubMed ID: 4966550
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The purine nucleotide cycle. Studies of ammonia production and interconversions of adenine and hypoxanthine nucleotides and nucleosides by rat brain in situ.
    Schultz V; Lowenstein JM
    J Biol Chem; 1978 Mar; 253(6):1938-43. PubMed ID: 204637
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Relation of nucleoside transport and surface phosphohydrolase activity in Hymenolepis diminuta.
    Pappas PW; Read CP
    J Parasitol; 1974 Jun; 60(3):447-52. PubMed ID: 4365533
    [No Abstract]   [Full Text] [Related]  

  • 53. Metabolism of guanine and guanine nucleotides in primary rat neuronal cultures.
    Brosh S; Sperling O; Dantziger E; Sidi Y
    J Neurochem; 1992 Apr; 58(4):1485-90. PubMed ID: 1312576
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adenine nucleotide changes associated with the initiation of sporulation in Bacillus subtilis.
    Hutchison KW; Hanson RS
    J Bacteriol; 1974 Jul; 119(1):70-5. PubMed ID: 4209776
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Phosphatase activity of intact cells of Bacillus subtilis and Bacillus mesentericus].
    Kolchins'ka ID; Drindina LP; Kolesnikova LA
    Mikrobiol Zh; 1968; 30(5):450-3. PubMed ID: 4308699
    [No Abstract]   [Full Text] [Related]  

  • 56. Distinct mechanisms of hypoxanthine and inosine transport in membrane vesicles isolated from Chinese hamster ovary and Balb 3T3 cells.
    Prasad R; Shopsis C; Hochstadt J
    Biochim Biophys Acta; 1981 May; 643(2):306-18. PubMed ID: 7225383
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Isocratic separation of some purine nucleotide, nucleoside, and base metabolites from biological extracts by high-performance liquid chromatography.
    Anderson FS; Murphy RC
    J Chromatogr; 1976 Jun; 121(2):251-62. PubMed ID: 6484
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metabolism and salvage of adenine and hypoxanthine by myocytes isolated from mature rat heart.
    Brown AK; Raeside DL; Bowditch J; Dow JW
    Biochim Biophys Acta; 1985 Jun; 845(3):469-76. PubMed ID: 2408678
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inhibition of utilization of hypoxanthine and guanine in cells treated with the carbocyclic analog of adenosine. Phosphates of carbocyclic nucleoside analogs as inhibitors of hypoxanthine (guanine) phosphoribosyltransferase.
    Bennett LL; Brockman RW; Rose LM; Allan PW; Shaddix SC; Shealy YF; Clayton JD
    Mol Pharmacol; 1985 Jun; 27(6):666-75. PubMed ID: 2987661
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nucleotide mutations in purA gene and pur operon promoter discovered in guanosine- and inosine-producing Bacillus subtilis strains.
    Qian J; Cai X; Chu J; Zhuang Y; Zhang S
    Biotechnol Lett; 2006 Jun; 28(12):937-41. PubMed ID: 16786280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.