These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 4291916)
1. The role of membrane phosphoglycerate kinase in the control of glycolytic rate by active cation transport in human red blood cells. Parker JC; Hoffman JF J Gen Physiol; 1967 Mar; 50(4):893-916. PubMed ID: 4291916 [TBL] [Abstract][Full Text] [Related]
2. Energy metabolism in human erythrocytes: the role of phosphoglycerate kinase in cation transport. Segel GB; Feig SA; Glader BE; Muller A; Dutcher P; Nathan DG Blood; 1975 Aug; 46(2):271-8. PubMed ID: 166715 [TBL] [Abstract][Full Text] [Related]
3. Studies on the mechanism of inhibition of the red cell metabolism by cardiac glycosides. Okonkwo PO; Longenecker G; Askari A J Pharmacol Exp Ther; 1975 Jul; 194(1):244-54. PubMed ID: 125326 [TBL] [Abstract][Full Text] [Related]
4. Membrane-bound ATP fuels the Na/K pump. Studies on membrane-bound glycolytic enzymes on inside-out vesicles from human red cell membranes. Mercer RW; Dunham PB J Gen Physiol; 1981 Nov; 78(5):547-68. PubMed ID: 6273495 [TBL] [Abstract][Full Text] [Related]
5. Effects of (H + ), (Na + ), (K + ) and certain membrane-active drugs on glycolysis, motility, and ATP synthesis by human spermatozoa. Peterson RN; Freund M Biol Reprod; 1973 Apr; 8(3):350-7. PubMed ID: 4349855 [No Abstract] [Full Text] [Related]
6. Potassium activated phosphatase from human red blood cells. The effects of p-nitrophenylphosphate on carbon fluxes. Garrahan PJ; Rega AF J Physiol; 1972 Jun; 223(2):595-617. PubMed ID: 4339052 [TBL] [Abstract][Full Text] [Related]
7. Interaction of phosphoglycerate kinase with human erythrocyte membranes. De BK; Kirtley ME J Biol Chem; 1977 Oct; 252(19):6715-20. PubMed ID: 893438 [TBL] [Abstract][Full Text] [Related]
8. The role of oxidized nicotinamide adenine dinucleotide in fluoride inhibition of active sodium transport in human erythrocytes. Millman MS; Omachi A J Gen Physiol; 1972 Sep; 60(3):337-50. PubMed ID: 4341351 [TBL] [Abstract][Full Text] [Related]
9. Explanation for the apparent lack of ouabain inhibition of pyruvate production in hemolysates: the "backward" PGK reaction. Chillar RK; Beutler E Blood; 1976 Mar; 47(3):507-12. PubMed ID: 130175 [TBL] [Abstract][Full Text] [Related]
10. Energy metabolism in human erythrocytes. II. Effects of glucose depletion. Feig SA; Segel GB; Shohet SB; Nathan DG J Clin Invest; 1972 Jun; 51(6):1547-54. PubMed ID: 5024046 [TBL] [Abstract][Full Text] [Related]
11. Combined glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase in catecholamine-stimulated guinea-pig cardiac muscle. Comparison with mass-action ratio of creatine kinase. Bünger R; Mukohara N; Kang YH; Mallet RT Eur J Biochem; 1991 Dec; 202(3):913-21. PubMed ID: 1765102 [TBL] [Abstract][Full Text] [Related]
12. Nucleotide requirements for sodium-sodium exchange catalysed by the sodium pump in human red cells. Glynn IM; Hoffman JF J Physiol; 1971 Oct; 218(1):239-56. PubMed ID: 4257032 [TBL] [Abstract][Full Text] [Related]
13. The relationship between cell membrane potassium ion transport and glycolysis. The effect of ethacrynic acid. Gordon EE; de Hartog M J Gen Physiol; 1969 Nov; 54(5):650-63. PubMed ID: 5346533 [TBL] [Abstract][Full Text] [Related]
14. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase works as an arsenate reductase in human red blood cells and rat liver cytosol. Gregus Z; Németi B Toxicol Sci; 2005 Jun; 85(2):859-69. PubMed ID: 15788719 [TBL] [Abstract][Full Text] [Related]
15. Facftors affecting the relative magnitudes of the sodium:potassium and sodium:sodium exchanges catalysed by the sodium pump. Garrahan PJ; Glynn IM J Physiol; 1967 Sep; 192(1):189-216. PubMed ID: 6051803 [TBL] [Abstract][Full Text] [Related]
16. Membrane compartmentalized ATP and its preferential use by the Na,K-ATPase of human red cell ghosts. Proverbio F; Hoffman JF J Gen Physiol; 1977 May; 69(5):605-32. PubMed ID: 140926 [TBL] [Abstract][Full Text] [Related]
17. Effects of Mg and Ca on the side dependencies of Na and K on ouabain binding to red blood cell ghosts and the control of Na transport by internal Mg. Bodemann HH; Hoffman JF J Gen Physiol; 1976 May; 67(5):547-61. PubMed ID: 1271042 [TBL] [Abstract][Full Text] [Related]
18. The localization of Mg-Na-K-activated adenosine triphosphatase on red cell ghost membranes. Marchesi VT; Palade GE J Cell Biol; 1967 Nov; 35(2):385-404. PubMed ID: 4228435 [TBL] [Abstract][Full Text] [Related]
19. Side-dependent effects of internal versus external Na and K on ouabain binding to reconstituted human red blood cell ghosts. Bodemann HH; Hoffman JF J Gen Physiol; 1976 May; 67(5):497-525. PubMed ID: 942609 [TBL] [Abstract][Full Text] [Related]
20. [3H]Ouabain binding and Na+, K+-ATPase in resealed human red cell ghosts. Shoemaker DG; Lauf PK J Gen Physiol; 1983 Mar; 81(3):401-20. PubMed ID: 6302199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]