These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 4292101)

  • 1. Carbohydrate transport in Staphylococcus aureus. V. The accumulation of phosphorylated carbohydrate derivatives, and evidence for a new enzyme-splitting lactose phosphate.
    Hengstenberg W; Egan JB; Morse ML
    Proc Natl Acad Sci U S A; 1967 Jul; 58(1):274-9. PubMed ID: 4292101
    [No Abstract]   [Full Text] [Related]  

  • 2. Carbohydrate transport in Staphylococcus aureus. VI. The nature of the derivatives accumulated.
    Hengstenberg W; Egan JB; Morse ML
    J Biol Chem; 1968 Apr; 243(8):1881-5. PubMed ID: 4869132
    [No Abstract]   [Full Text] [Related]  

  • 3. Sugar transport. VII. Lactose transport in Staphylococcus aureus.
    Simoni RD; Roseman S
    J Biol Chem; 1973 Feb; 248(3):966-74. PubMed ID: 4684717
    [No Abstract]   [Full Text] [Related]  

  • 4. Metabolism of lactose by Staphylococcus aureus and its genetic basis.
    Morse ML; Hill KL; Egan JB; Hengstenberg W
    J Bacteriol; 1968 Jun; 95(6):2270-4. PubMed ID: 5669899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of thiomethyl-beta-D-galactoside 6-phosphate accumulated by Staphylococcus aureus.
    Laue P; MacDonald RE
    J Biol Chem; 1968 Feb; 243(3):680-2. PubMed ID: 5637719
    [No Abstract]   [Full Text] [Related]  

  • 6. Sugar transport. VI. Phosphoryl transfer in the lactose phosphotransferase system of Staphylococcus aureus.
    Simoni RD; Hays JB; Nakazawa T; Roseman S
    J Biol Chem; 1973 Feb; 248(3):957-65. PubMed ID: 4684716
    [No Abstract]   [Full Text] [Related]  

  • 7. Genetic evidence for the physiological significance of the D-tagatose 6-phosphate pathway of lactose and D-galactose degradation in staphylococcus aureus.
    Bissett DL; Anderson RL
    J Bacteriol; 1974 Sep; 119(3):698-704. PubMed ID: 4277494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbohydrate transport in Staphylococcus aureus. IV. Maltose accumulation and metabolism.
    Button DK; Egan JB; Hengstenberg W; Morse ML
    Biochem Biophys Res Commun; 1973 Jun; 52(3):850-5. PubMed ID: 4710567
    [No Abstract]   [Full Text] [Related]  

  • 9. Mechanism of hydrolysis of O-nitrophenyl-beta-galactoside in Staphylococcus aureus and its significance for theories of sugar transport.
    Kennedy EP; Scarborough GA
    Proc Natl Acad Sci U S A; 1967 Jul; 58(1):225-8. PubMed ID: 5341056
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of morphine derivatives on lipid metabolism in Staphylococcus aureus.
    Gale EF
    Mol Pharmacol; 1970 Mar; 6(2):134-45. PubMed ID: 5418232
    [No Abstract]   [Full Text] [Related]  

  • 11. Investigations on the enzymes and toxins of staphylococci. Study of phosphatase using p-nitrophenyl phosphate as substrate.
    Tirunarayanan MO
    Acta Pathol Microbiol Scand; 1968; 74(4):573-90. PubMed ID: 4313506
    [No Abstract]   [Full Text] [Related]  

  • 12. Studies on the metabolic determinants of D-galactose-induced neurotoxicity in the chick.
    Kozak LP; Wells WW
    J Neurochem; 1971 Nov; 18(11):2217-28. PubMed ID: 4331598
    [No Abstract]   [Full Text] [Related]  

  • 13. Carbohydrate transport in Staphylococcus aureus. 3. Studies of the transport process.
    Egan JB; Morse ML
    Biochim Biophys Acta; 1966 Jan; 112(1):63-73. PubMed ID: 5947899
    [No Abstract]   [Full Text] [Related]  

  • 14. Lactose and D0galactose metabolism in Staphylococcus aureus: pathway of D-galactose 6-phosphate degradation.
    Bissett DL; Anderson RL
    Biochem Biophys Res Commun; 1973 May; 52(2):641-7. PubMed ID: 4711177
    [No Abstract]   [Full Text] [Related]  

  • 15. Vitamin B 12 biosynthesis. Evidence for a new precursor vitamin B 12 5'-phosphate.
    Friedmann HC
    J Biol Chem; 1968 Apr; 243(8):2065-75. PubMed ID: 4296474
    [No Abstract]   [Full Text] [Related]  

  • 16. Carbohydrate transport in Clostridium perfringens type A.
    Groves DJ; Gronlund AF
    J Bacteriol; 1969 Dec; 100(3):1256-63. PubMed ID: 4311868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition by 3-deoxy-3-fluoro-D-glucose of the utilization of lactose and other carbon sources by Escherichia coli.
    Miles RJ; Pirt SJ
    J Gen Microbiol; 1973 Jun; 76(2):305-18. PubMed ID: 4579128
    [No Abstract]   [Full Text] [Related]  

  • 18. CARBOHYDRATE TRANSPORT IN STAPHYLOCOCCUS AUREUS I. GENETIC AND BIOCHEMICAL ANALYSIS OF A PLEIOTROPIC TRANSPORT MUTANT.
    EGAN JB; MORSE ML
    Biochim Biophys Acta; 1965 Feb; 97():310-9. PubMed ID: 14292840
    [No Abstract]   [Full Text] [Related]  

  • 19. Studies on the relation of thiomethyl-beta-D-galactoside accumulation to thiomethyl-beta-D-galactoside phosphorylation in Staphylococcus aureus HS1159.
    Laue P; MacDonald RE
    Biochim Biophys Acta; 1968 Oct; 165(3):410-8. PubMed ID: 5737935
    [No Abstract]   [Full Text] [Related]  

  • 20. The effect of dimethyl sulfoxide (DMSO) on permeability of Staphylococcus aureus.
    Ghajar BM; Harmon SA
    Biochem Biophys Res Commun; 1968 Sep; 32(6):940-4. PubMed ID: 5698897
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.