BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 429269)

  • 1. Thermal regulation of fatty acid synthetase from Brevibacterium ammoniagenes.
    Kawaguchi A; Seyama Y; Sasaki K; Okuda S; Yamakawa T
    J Biochem; 1979 Mar; 85(3):865-9. PubMed ID: 429269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereochemical course of enoyl reduction catalyzed by fatty acid synthetase. Stereochemistry of hydrogen incorporation from reduced pyridine nucleotide.
    Kawaguchi A; Yoshimura T; Saito K; Seyama Y; Kasama T; Yamakawa T; Okuda S
    J Biochem; 1980 Jul; 88(1):1-7. PubMed ID: 7190971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate control of termination of fatty acid biosynthesis by fatty acid synthetase from Brevibacterium ammoniagenes.
    Kawaguchi A; Arai K; Seyama Y; Yamakawa T; Okuda S
    J Biochem; 1980 Aug; 88(2):303-6. PubMed ID: 7419496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature- and growth-phase-dependent changes in membrane fatty acid compositions of Brevibacterium ammoniagenes.
    Oh-Hashi Y; Kawaguchi A; Seyama Y; Okuyama H
    Arch Biochem Biophys; 1986 Jul; 248(1):440-3. PubMed ID: 3729431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid synthetase from Brevibacterium ammoniagenes: formation of monounsaturated fatty acids by a multienzyme complex.
    Kawaguchi A; Okuda S
    Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3180-3. PubMed ID: 20622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propionyl-Coa induced synthesis of even-chain-length fatty acids by fatty acid synthetase from Brevibacterium ammoniagenes.
    Arai K; Kawaguchi A; Saito Y; Koike N; Seyama Y; Yamakawa T; Okuda S
    J Biochem; 1982 Jan; 91(1):11-8. PubMed ID: 7068555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and functional differentiation of two type I fatty acid synthases in Brevibacterium ammoniagenes.
    Stuible HP; Wagner C; Andreou I; Huter G; Haselmann J; Schweizer E
    J Bacteriol; 1996 Aug; 178(16):4787-93. PubMed ID: 8759839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Metabolic transformation of labelled exogenous fatty acids by fungal cultures of the family Entomophthoraceae].
    Popova NI; Bekhtereva MN; Davidova EG
    Mikrobiologiia; 1986; 55(5):732-6. PubMed ID: 3821589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased ratio of saturated to unsaturated C18 fatty acids in colonic adenocarcinoma: implications for cryotherapy and lipid raft function.
    Rakheja D; Kapur P; Hoang MP; Roy LC; Bennett MJ
    Med Hypotheses; 2005; 65(6):1120-3. PubMed ID: 16084671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: Role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB.
    Menendez JA; Mehmi I; Atlas E; Colomer R; Lupu R
    Int J Oncol; 2004 Mar; 24(3):591-608. PubMed ID: 14767544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two Delta9-stearic acid desaturases are required for Aspergillus nidulans growth and development.
    Wilson RA; Chang PK; Dobrzyn A; Ntambi JM; Zarnowski R; Keller NP
    Fungal Genet Biol; 2004 May; 41(5):501-9. PubMed ID: 15050539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature and nutrient availability control growth rate and fatty acid composition of facultatively psychrophilic Cobetia marina strain L-2.
    Yumoto I; Hirota K; Iwata H; Akutsu M; Kusumoto K; Morita N; Ezura Y; Okuyama H; Matsuyama H
    Arch Microbiol; 2004 May; 181(5):345-51. PubMed ID: 15067498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptational changes in cellular fatty acid branching and unsaturation of Aeromonas species as a response to growth temperature and salinity.
    Chihib NE; Tierny Y; Mary P; Hornez JP
    Int J Food Microbiol; 2005 Jun; 102(1):113-9. PubMed ID: 15925007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separate enzymes catalyze the final two steps of coenzyme A biosynthesis in Brevibacterium ammoniagenes: purification of pantetheine phosphate adenylyltransferase.
    Martin DP; Drueckhammer DG
    Biochem Biophys Res Commun; 1993 May; 192(3):1155-61. PubMed ID: 8389542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of bacterial fatty acid synthetase from Brevibacterium ammoniagenes.
    Morishima N; Ikai A; Noda H; Kawaguchi A
    Biochim Biophys Acta; 1982 Nov; 708(3):305-12. PubMed ID: 7171618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of lipids in the structure and function of E. coli membrane.
    Wakil SJ; Esfahani M
    Biochem Soc Symp; 1972; (35):395-405. PubMed ID: 4614811
    [No Abstract]   [Full Text] [Related]  

  • 17. Growth temperature affects accumulation of exogenous fatty acids and fatty acid composition in Schizosaccharomyces pombe.
    McDonough VM; Roth TM
    Antonie Van Leeuwenhoek; 2004 Nov; 86(4):349-54. PubMed ID: 15702387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SFH2 regulates fatty acid synthase activity in the yeast Saccharomyces cerevisiae and is critical to prevent saturated fatty acid accumulation in response to haem and oleic acid depletion.
    Desfougères T; Ferreira T; Bergès T; Régnacq M
    Biochem J; 2008 Jan; 409(1):299-309. PubMed ID: 17803462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational pathway engineering of type I fatty acid synthase allows the biosynthesis of triacetic acid lactone from D-glucose in vivo.
    Zha W; Shao Z; Frost JW; Zhao H
    J Am Chem Soc; 2004 Apr; 126(14):4534-5. PubMed ID: 15070368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Investigations on the fatty acid composition of lipids from Salmonella minnesota S and R forms (author's transl)].
    Ferber E; Schlecht S; Fromme I
    Zentralbl Bakteriol Orig A; 1976 Nov; 236(2-3):275-87. PubMed ID: 1015016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.