BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 429269)

  • 21. Heterologous expression and biochemical characterization of two functionally different type I fatty acid synthases from Brevibacterium ammoniagenes.
    Stuible HP; Meurer G; Schweizer E
    Eur J Biochem; 1997 Jul; 247(1):268-73. PubMed ID: 9249036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Downregulation of saturated fatty acid and upregulation of unsaturated fatty acid by 13-cis-retinoic acid in human prostate cancer cells.
    Dahiya R; Park HD; Cassafer G; Cusick J; Narayan P
    Biochem Int; 1992 Dec; 28(6):981-7. PubMed ID: 1290470
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification, isolation and biochemical characterization of a phosphopantetheine:protein transferase that activates the two type-I fatty acid synthases of Brevibacterium ammoniagenes.
    Stuible HP; Meier S; Schweizer E
    Eur J Biochem; 1997 Sep; 248(2):481-7. PubMed ID: 9346306
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of temperature on the fatty acid composition of Tetrahymena pyriformis WH-14.
    Conner RL; Stewart BY
    J Protozool; 1976 Feb; 23(1):196-3. PubMed ID: 818369
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in fatty acid composition of Pseudomonas aeruginosa ATCC 15442 induced by growth conditions: consequences of resistance to quaternary ammonium compounds.
    Dubois-Brissonnet F; Malgrange C; Guérin-Méchin L; Heyd B; Leveau JY
    Microbios; 2001; 106(414):97-110. PubMed ID: 11506066
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stereochemical studies of hydrogen incorporation from nucleotides with fatty acid synthetase from Brevibacterium ammoniagenes.
    Seyama Y; Kasama T; Yamakawa T; Kawaguchi A; Okuda S
    J Biochem; 1977 Apr; 81(4):1167-73. PubMed ID: 18449
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in fatty acid branching and unsaturation of Streptomyces griseus and Brevibacterium fermentans as a response to growth temperature.
    Suutari M; Laakso S
    Appl Environ Microbiol; 1992 Jul; 58(7):2338-40. PubMed ID: 1637171
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular structure of the multifunctional fatty acid synthetase gene of Brevibacterium ammoniagenes: its sequence of catalytic domains is formally consistent with a head-to-tail fusion of the two yeast genes FAS1 and FAS2.
    Meurer G; Biermann G; Schütz A; Harth S; Schweizer E
    Mol Gen Genet; 1992 Mar; 232(1):106-16. PubMed ID: 1552898
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stereochemical studies of hydrogen incorporation from nucleotides with fatty acid synthetase from Brevibacterium ammoniagenes.
    Seyama Y; Kasama T; Yamakawa T; Kawaguchi A; Okuda S
    Adv Exp Med Biol; 1978; 101():37-43. PubMed ID: 27069
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New assay method for fatty acid synthetase with mass fragmentography.
    Seyama Y; Kawaguchi A; Okuda S; Yamakawa T
    J Biochem; 1978 Nov; 84(5):1309-14. PubMed ID: 730755
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Continuous production of NADP by immobilized Brevibacterium ammoniagenes cells.
    Murata K; Kato J; Chibata I
    Biotechnol Bioeng; 1979 May; 21(5):887-95. PubMed ID: 35255
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of temperature and growth rate on the proportion of unsaturated fatty acids in bacterial lipids.
    Gill CO; Suisted JR
    J Gen Microbiol; 1978 Jan; 104(1):31-6. PubMed ID: 624935
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mapping of acyl carrier domain within the subunit of type I bacterial fatty acid synthetase.
    Morishima N; Ikai A
    Biochim Biophys Acta; 1985 Dec; 832(3):297-307. PubMed ID: 4074750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Purification and characterization of FAD synthetase from Brevibacterium ammoniagenes.
    Manstein DJ; Pai EF
    J Biol Chem; 1986 Dec; 261(34):16169-73. PubMed ID: 3023344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temperature adaptation in yeasts: the role of fatty acids.
    Suutari M; Liukkonen K; Laakso S
    J Gen Microbiol; 1990 Aug; 136(8):1469-74. PubMed ID: 2262787
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of overproduction of orotic acid by a mutant of Brevibacterium ammoniagenes.
    Skodová H; Skoda J
    Appl Microbiol; 1969 Jan; 17(1):188-9. PubMed ID: 5774759
    [No Abstract]   [Full Text] [Related]  

  • 37. Changes in fatty acid composition in wheat cultivars of contrasting hardiness.
    de la Roche IA; Pomeroy MK; Andrews CJ
    Cryobiology; 1975 Oct; 12(5):506-12. PubMed ID: 1192760
    [No Abstract]   [Full Text] [Related]  

  • 38. Production of nucleic acid-related substances by fermentative processes. XIX. Accumulation of 5'-inosinic acid by a mutant of Brevibacterium ammoniagenes.
    Furuya A; Abe S; Kinoshita S
    Appl Microbiol; 1968 Jul; 16(7):981-7. PubMed ID: 5664127
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of temperature on lipid unsaturation.
    Neidleman SL
    Biotechnol Genet Eng Rev; 1987; 5():245-68. PubMed ID: 3314900
    [No Abstract]   [Full Text] [Related]  

  • 40. Effects of growth pressure and temperature on Fatty Acid composition of a barotolerant deep-sea bacterium.
    Kamimura K; Fuse H; Takimura O; Yamaoka Y
    Appl Environ Microbiol; 1993 Mar; 59(3):924-6. PubMed ID: 16348900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.