These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 4292718)

  • 1. Techniques for analysis of glucose binding by human erythrocyte membranes.
    Levine M; Stein WD
    Biochim Biophys Acta; 1967 Sep; 135(4):710-6. PubMed ID: 4292718
    [No Abstract]   [Full Text] [Related]  

  • 2. Hypothesis for the interaction of phlorizin and phloretin with membrane carriers for sugars.
    Alvarado F
    Biochim Biophys Acta; 1967 Jul; 135(3):483-95. PubMed ID: 6048818
    [No Abstract]   [Full Text] [Related]  

  • 3. The effect of temperature on the competitive inhibition of glucose transfer in human erythrocytes by phenolphthalein, phloretin and stilboestrol.
    Forsling ML; Widdas WF
    J Physiol; 1968 Feb; 194(2):545-54. PubMed ID: 5639367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of phloretin on monosaccharide transport in erythrocyte ghosts.
    Benes I; Kolínská J; Kotyk A
    J Membr Biol; 1972; 8(3):303-9. PubMed ID: 5084118
    [No Abstract]   [Full Text] [Related]  

  • 5. Effects of phloretin and synthetic estrogens on beta-galactoside transport in Escherichia coli.
    Batt ER; Schachter D
    Biochim Biophys Acta; 1971 Mar; 233(1):189-200. PubMed ID: 4931395
    [No Abstract]   [Full Text] [Related]  

  • 6. Investigations on the existence of a specific retention of D-glucose by the human erythrocyte membrane.
    Moller JV
    Biochim Biophys Acta; 1971 Oct; 249(1):96-100. PubMed ID: 5141136
    [No Abstract]   [Full Text] [Related]  

  • 7. Failure of equilibrium dialysis to show selective monosaccharide binding by erythrocyte membranes.
    Masiak SJ; LeFevre PG
    J Membr Biol; 1972; 9(3):291-6. PubMed ID: 5085304
    [No Abstract]   [Full Text] [Related]  

  • 8. Characteristics of an adenosine triphosphatase in erythrocyte membranes stimulated by 2,4-dinitrophenol.
    Laris PC; Letchworth PE
    J Cell Physiol; 1967 Apr; 69(2):143-9. PubMed ID: 4226748
    [No Abstract]   [Full Text] [Related]  

  • 9. Different binding sites for glucose and sorbose at the erythrocyte membrane, studied by gel filtration and infrared spectroscopy.
    Zimmer G; Lacko L; Günther H
    J Membr Biol; 1972; 9(4):305-18. PubMed ID: 4674401
    [No Abstract]   [Full Text] [Related]  

  • 10. The detection of the enthalpy of binding of D-glucose of human red blood cell membranes by microcalorimetry.
    Zala CA; Jones MN; Levine M
    FEBS Lett; 1974 Nov; 48(2):196-9. PubMed ID: 4435219
    [No Abstract]   [Full Text] [Related]  

  • 11. Inhibition by phloretin and phlorizin derivatives of sugar transport in different cells.
    Kotyk A; Kolínská J; Veres K; Szammer J
    Biochem Z; 1965 Jul; 342(2):129-38. PubMed ID: 5867141
    [No Abstract]   [Full Text] [Related]  

  • 12. Phloretin keto-enol tautomerism and inhibition of glucose transport in human erythrocytes (including effects of phloretin on anion transport).
    Fuhrmann GF; Dernedde S; Frenking G
    Biochim Biophys Acta; 1992 Sep; 1110(1):105-11. PubMed ID: 1390829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new method for measuring glucose translocation through biological membranes and its application to human erythrocyte ghosts.
    Taverna RD; Langdon RG
    Biochim Biophys Acta; 1973 Mar; 298(2):412-21. PubMed ID: 4719138
    [No Abstract]   [Full Text] [Related]  

  • 14. Phlorizin--receptor interactions in fat cell plasma membranes.
    Czech MP; Lynn DG; Lynn WS
    Biochim Biophys Acta; 1973 Nov; 323(4):639-42. PubMed ID: 4761095
    [No Abstract]   [Full Text] [Related]  

  • 15. Interaction between phloretin and the red blood cell membrane.
    Jennings ML; Solomon AK
    J Gen Physiol; 1976 Apr; 67(4):381-97. PubMed ID: 5575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The inhibition of glucose-6-phosphatase by phlorizin and structurally related compounds.
    Zerr C; Novoa WB
    Biochem Biophys Res Commun; 1968 Jul; 32(2):129-33. PubMed ID: 4299648
    [No Abstract]   [Full Text] [Related]  

  • 17. Glucose transport in white erythrocyte ghosts and membrane-derived vesicles.
    Taverna RD; Langdon RG
    Biochim Biophys Acta; 1973 Mar; 298(2):422-8. PubMed ID: 4719139
    [No Abstract]   [Full Text] [Related]  

  • 18. An example of mutual competition between transport inhibitors of different kinetic type: the inhibition of intestinal transport of glucalogues by phloretin and phlorizin.
    Colombo VE; Semenza G
    Biochim Biophys Acta; 1972 Oct; 288(1):145-52. PubMed ID: 4640383
    [No Abstract]   [Full Text] [Related]  

  • 19. Membrane transport of sugars in the rat lens.
    Elbrink J; Bihler I
    Can J Ophthalmol; 1972 Jan; 7(1):96-101. PubMed ID: 5057954
    [No Abstract]   [Full Text] [Related]  

  • 20. Erythrocyte membranes--effect of increased cholesterol content on permeability.
    Kroes J; Ostwald R
    Biochim Biophys Acta; 1971 Dec; 249(2):647-50. PubMed ID: 5134201
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.