BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 4292785)

  • 1. Phosphate metabolism in the electric organ.
    Cheng SC; Keynes RD
    Biochim Biophys Acta; 1967 Jul; 143(1):249-56. PubMed ID: 4292785
    [No Abstract]   [Full Text] [Related]  

  • 2. Glycolytic control mechanisms. V. Kinetics of high energy phosphate intermediate changes during electrical discharge and recovery in the main organ of Electrophorus electricus.
    Williamson JR; Herczeg BE; Coles HS; Cheung WY
    J Biol Chem; 1967 Nov; 242(21):5119-24. PubMed ID: 4293783
    [No Abstract]   [Full Text] [Related]  

  • 3. Calculated equilibria of phosphocreatine and adenosine phosphates during utilization of high energy phosphate by muscle.
    McGilvery RW; Murray TW
    J Biol Chem; 1974 Sep; 249(18):5845-50. PubMed ID: 4369824
    [No Abstract]   [Full Text] [Related]  

  • 4. [Energy-rich phosphate compounds in the myocardium under the influence of adrenaline, noradrenaline and isoproterenol].
    Krautzberger W; Kammermeier H; Kammermeier B
    Pflugers Arch; 1969; 312(1):R6-7. PubMed ID: 5390286
    [No Abstract]   [Full Text] [Related]  

  • 5. [Phosphate compounds in isolated, perfused hearts during pH variation due to changes in extracellular PCO2 and bicarbonate].
    Kammermeier H; Rudroff W; Krautzberger W; Gerlach E
    Pflugers Arch; 1969; 312(1):R10-1. PubMed ID: 5390157
    [No Abstract]   [Full Text] [Related]  

  • 6. Oxygen debt and high-energy phosphates in gastrocnemius muscle of the dog.
    Piiper J; Di Prampero PE; Cerretelli P
    Am J Physiol; 1968 Sep; 215(3):523-31. PubMed ID: 5670989
    [No Abstract]   [Full Text] [Related]  

  • 7. Biochemical studies of transitions from rest to activity.
    Chance B
    Res Publ Assoc Res Nerv Ment Dis; 1967; 45():48-63. PubMed ID: 4295649
    [No Abstract]   [Full Text] [Related]  

  • 8. [Control exercized by adrenalin on turnover time of ATP and ADP at the level of glycolysis and oxidative phosphorylations in muscle].
    Morelis R; Gautheron D
    Bull Soc Chim Biol (Paris); 1968; 50(12):2503-20. PubMed ID: 4306333
    [No Abstract]   [Full Text] [Related]  

  • 9. [Regulation problems in the energy metabolism of the myocardium].
    Nägle S
    Klin Wochenschr; 1970 Sep; 48(18):1075-89. PubMed ID: 4931196
    [No Abstract]   [Full Text] [Related]  

  • 10. [Change in the content of adenine nucleotides and creatine phosphate and in the activity of creatine kinase in the large intestine mucosa in chronic enterocolitis in relation to the severity of the disease].
    Shamov IA; Veksler IaI; Aslanova NR
    Vopr Med Khim; 1978; 24(3):310-4. PubMed ID: 664455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The particulate adenosine triphosphate-creatine phosphotransferase from brain: its distribution in subcellular fractions and its properties.
    Swanson PD
    J Neurochem; 1967 Mar; 14(3):343-56. PubMed ID: 4225398
    [No Abstract]   [Full Text] [Related]  

  • 12. The creatine-creatine phosphate energy shuttle.
    Bessman SP; Carpenter CL
    Annu Rev Biochem; 1985; 54():831-62. PubMed ID: 3896131
    [No Abstract]   [Full Text] [Related]  

  • 13. Brain metabolism in experimental uremia.
    Van den Noort S; Eckel RE; Brine KL; Hrdlicka J
    Arch Intern Med; 1970 Nov; 126(5):831-4. PubMed ID: 4248904
    [No Abstract]   [Full Text] [Related]  

  • 14. Breakdown of creatine phosphate and ATP in nerve terminals and electroplaques of the Torpedo electric organ: comparison with the electrical energy dissipated.
    Chmouliovsky-Moghissi M; Dunant Y
    J Neurochem; 1979 Apr; 32(4):1287-94. PubMed ID: 430087
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of sleep on brain labile phosphates and metabolic rate.
    Van den Noort S; Brine K
    Am J Physiol; 1970 May; 218(5):1434-9. PubMed ID: 4245209
    [No Abstract]   [Full Text] [Related]  

  • 16. [Determination of inorganic phosphorus in the presence of phosphorylated compounds and applications to the study of phosphorus metabolism in the rabbit vagus nerve].
    Schorderet M
    Helv Physiol Pharmacol Acta; 1968; 26(2):CR 248-51. PubMed ID: 5697786
    [No Abstract]   [Full Text] [Related]  

  • 17. Free adenosine diphosphate as an intermediary in the phosphorylation by creatine phosphate of adenosine diphosphate bound to actin.
    West JJ; Nagy B; Gergely J
    J Biol Chem; 1967 Mar; 242(6):1140-5. PubMed ID: 4290314
    [No Abstract]   [Full Text] [Related]  

  • 18. [Dependence of creatine kinase and glycogen synthetase activities of skeletal muscles on state of adenine nucleotide phosphorylation and cAMP metabolism].
    Iakovlev NN; Chagovets NR; Maksimova LV
    Ukr Biokhim Zh (1978); 1980; 52(3):293-8. PubMed ID: 6247797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Exchange of radioactive, radiophosphorus-labeled orthophosphate with Palpha, Pbeta, and Pgamma of ATP and with creatine phosphate in resting muscle, temperature variations and electric stimulation].
    FLECKENSTEIN A; JANKE J
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1957; 265(3):237-63. PubMed ID: 13542146
    [No Abstract]   [Full Text] [Related]  

  • 20. [Action of fluorodinitrobenzene on the phosphoric ester metabolism of arterial smooth muscle during electric stimulation (bovine carotid)].
    Daemers-Lambert C
    Angiologica; 1969; 6(1):1-12. PubMed ID: 5768396
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.