These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 4292831)

  • 1. Metabolite repression of fructose 1,6-diphosphatase in yeast.
    Gancedo C; Gancedo JM; Sols A
    Biochem Biophys Res Commun; 1967 Mar; 26(5):528-31. PubMed ID: 4292831
    [No Abstract]   [Full Text] [Related]  

  • 2. Isolation of a regulatory mutant of fructose-1,6-diphosphatase in Saccharomyces carlsbergensis.
    van de Poll KW; Kerkenaar A; Schamhart DH
    J Bacteriol; 1974 Mar; 117(3):965-70. PubMed ID: 4360542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of fructose-1,6-diphosphatase by glucose in yeast.
    Gancedo C
    J Bacteriol; 1971 Aug; 107(2):401-5. PubMed ID: 4329729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deuterium isotope effects in the fermentation of hexoses to ethanol by Saccharomyces cerevisiae. II. A steady-state kinetic analysis of the isotopic composition of the methyl group of ethanol in an isotopic mirror fermentation experiment.
    Saur WK; Peterson DT; Halevi EA; Crespi HL; Katz JJ
    Biochemistry; 1968 Oct; 7(10):3537-46. PubMed ID: 5681463
    [No Abstract]   [Full Text] [Related]  

  • 5. Metabolism of hexoses in the intact mosquito: exclusion of glucose and trehalose as intermediates.
    Van Handel E
    Comp Biochem Physiol; 1969 Apr; 29(1):413-21. PubMed ID: 4389551
    [No Abstract]   [Full Text] [Related]  

  • 6. Reversal of glycolysis in yeast.
    Maitra PK; Lobo Z
    Arch Biochem Biophys; 1978 Jan; 185(2):535-43. PubMed ID: 204255
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of D (minus)- and L (plus)-threo-chloramphenicol on nucleotide and related respiratory activities in yeast undergoing metabolic repression and de-repression.
    Ball AJ; Tustanoff ER
    Biochim Biophys Acta; 1970 Feb; 199(2):476-89. PubMed ID: 4313887
    [No Abstract]   [Full Text] [Related]  

  • 8. Development of respiration in yeast grown anaerobically on different carbon sources.
    Tustanoff ER; Bartley W
    Biochem J; 1964 Jun; 91(3):595-600. PubMed ID: 4284641
    [No Abstract]   [Full Text] [Related]  

  • 9. AMP-sensitive fructose diphosphatase in wheat embryos: changes in levels of glycolytic intermediates during enzyme derepression.
    Bianchetti R; Sartirana ML
    Life Sci II; 1968 Feb; 7(4):121-7. PubMed ID: 4328457
    [No Abstract]   [Full Text] [Related]  

  • 10. Metabolism of carbohydrates in the normal liver and under the influence of ethanol and hormones.
    Lundquist F
    Scand J Clin Lab Invest Suppl; 1966; 18():47-61. PubMed ID: 4381148
    [No Abstract]   [Full Text] [Related]  

  • 11. Turnover of yeast fructose-bisphosphatase in different metabolic conditions.
    Funayama S; Gancedo JM; Gancedo C
    Eur J Biochem; 1980 Aug; 109(1):61-6. PubMed ID: 6250838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SOME PROPERTIES OF FRUCTOSE 1,6-DIPHOSPHATASE OF RAT LIVER AND THEIR RELATION TO THE CONTROL OF GLUCONEOGENESIS.
    UNDERWOOD AH; NEWSHOLME EA
    Biochem J; 1965 Jun; 95(3):767-74. PubMed ID: 14342513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of galactokinase in Saccharomyces cerevisiae: kinetics of induction and glucose effects.
    Adams BG
    J Bacteriol; 1972 Aug; 111(2):308-15. PubMed ID: 4559724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ALLOSTERIC INHIBITION OF RAT LIVER FRUCTOSE 1,6-DIPHOSPHATASE BY ADENOSINE 5'-MONOPHOSPHATE.
    TAKETA K; POGELL BM
    J Biol Chem; 1965 Feb; 240():651-62. PubMed ID: 14275118
    [No Abstract]   [Full Text] [Related]  

  • 15. The Crabtree effect: a regulatory system in yeast.
    De Deken RH
    J Gen Microbiol; 1966 Aug; 44(2):149-56. PubMed ID: 5969497
    [No Abstract]   [Full Text] [Related]  

  • 16. RECIPROCAL EFFECTS OF CARBON SOURCES ON THE LEVELS OF AN AMP-SENSITIVE FRUCTOSE-1,6-DIPHOSPHATASE AND PHOSPHOFRUCTOKINASE IN YEAST.
    GANCEDO C; SALAS ML; GINER A; SOLS A
    Biochem Biophys Res Commun; 1965 Jun; 20():15-20. PubMed ID: 14341932
    [No Abstract]   [Full Text] [Related]  

  • 17. Impairment by hexoses of the utilization of maltose by Saccharomyces cerevisiae.
    Heredia CF
    Biochim Biophys Acta; 1998 Sep; 1425(1):151-8. PubMed ID: 9813297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Galactose inhibition of the constitutive transport of hexoses in Saccharomyces cerevisiae.
    Nevado J; Navarro MA; Heredia CF
    Yeast; 1993 Feb; 9(2):111-9. PubMed ID: 8465600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative metabolism of glucose, fructose and galactose by normal and glucose-6-phosphate dehydrogenase-deficient human red cell haemolysates.
    Sturman JA
    Clin Chim Acta; 1969 Oct; 26(1):135-40. PubMed ID: 4391029
    [No Abstract]   [Full Text] [Related]  

  • 20. Alcohol dehydrogenase II and fructose-1,6-bisphosphatase appear to be co-regulated in wild-type yeast.
    Wills C; Martin T; Melham T; Walker D
    FEBS Lett; 1985 Apr; 183(1):155-60. PubMed ID: 2984049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.