These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 4293082)

  • 21. Effect of methionine and vitamin B-12 on the activities of methionine biosynthetic enzymes in metJ mutants of Escherichia coli K12.
    Greene RC; Williams RD; Kung HF; Spears C; Weissbach H
    Arch Biochem Biophys; 1973 Sep; 158(1):249-56. PubMed ID: 4580842
    [No Abstract]   [Full Text] [Related]  

  • 22. Methionine biosynthesis and S-adenosylmethionine degradation during an induced morphogenesis of Candida albicans.
    Balish E
    Can J Microbiol; 1973 Jul; 19(7):847-53. PubMed ID: 4580452
    [No Abstract]   [Full Text] [Related]  

  • 23. Formation of methionine methyl groups.
    Jaenicke L; Rüdiger H
    Fed Proc; 1971; 30(1):160-6. PubMed ID: 4321981
    [No Abstract]   [Full Text] [Related]  

  • 24. BIOSYNTHESIS OF METHIONINE IN SACCHAROMYCES CEREVISIAE; PARTIAL PURIFICATION AND PROPERTIES OF S-ADENOSYLMETHIONINE: HOMOCYSTEINE METHYLTRANSFERASE. ANL-6823.
    SHAPIRO SK; YPHANTIS DA; ALMENAS A
    ANL Rep; 1964 Jan; ():128-40. PubMed ID: 14151644
    [No Abstract]   [Full Text] [Related]  

  • 25. Escherichia coli B N5-methyltetrahydrofolate-homocysteine cobalamin methyltransferase: activation with S-adenosyl-L-methionine and the mechanism for methyl group transfer.
    Taylor RT; Weissbach H
    Arch Biochem Biophys; 1969 Feb; 129(2):745-66. PubMed ID: 4886252
    [No Abstract]   [Full Text] [Related]  

  • 26. Influence of methionine pool composition on the formation of methyl-deficient transfer ribonucleic acid in Saccharomyces cerevisiae.
    Kjellin-Stråby K
    J Bacteriol; 1969 Nov; 100(2):687-94. PubMed ID: 5354940
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adenosine kinase-deficient mutant of Saccharomyces cerevisiae accumulates S-adenosylmethionine because of an enhanced methionine biosynthesis pathway.
    Kanai M; Masuda M; Takaoka Y; Ikeda H; Masaki K; Fujii T; Iefuji H
    Appl Microbiol Biotechnol; 2013 Feb; 97(3):1183-90. PubMed ID: 22790542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of one-carbon biosynthesis and utilization in Escherichia coli.
    Meedel TH; Pizer LI
    J Bacteriol; 1974 Jun; 118(3):905-10. PubMed ID: 4598009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. BIOSYNTHESIS OF METHIONINE IN SACCHAROMYCES CEREVISIAE. KINETICS AND MECHANISM OF REACTION OF S-ADENOSYLMETHIONINE:HOMOCYSTEINE METHYLTRANSFERASE.
    SHAPIRO SK; ALMENAS A; THOMSON JF
    J Biol Chem; 1965 Jun; 240():2512-8. PubMed ID: 14313746
    [No Abstract]   [Full Text] [Related]  

  • 30. Partial purification and characterization of S-adenosylhomocysteine hydrolase isolated from Saccharomyces cerevisiae.
    Knudsen RC; Yall I
    J Bacteriol; 1972 Oct; 112(1):569-75. PubMed ID: 4562409
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reversion to a homocysteine-responsive phenotype in a human melanoma cell line is associated with diminished growth potential and increased methionine biosynthesis.
    Liteplo RG
    Exp Cell Res; 1990 Feb; 186(2):340-5. PubMed ID: 2298245
    [TBL] [Abstract][Full Text] [Related]  

  • 32. THE ROLE OF VITAMIN B12 IN METHYL TRANSFER TO HOMOCYSTEINE.
    BUCHANAN JM; ELFORD HL; LOUGHLIN RE; MCDOUGALL BM; ROSENTHAL S
    Ann N Y Acad Sci; 1964 Apr; 112():756-73. PubMed ID: 14167310
    [No Abstract]   [Full Text] [Related]  

  • 33. Control of serine biosynthesis in Micrococcus lysodeikticus: inhibition of phosphoglyceric acid dehydrogenase.
    Nelson JD; Naylor HB
    Can J Microbiol; 1971 Jan; 17(1):25-30. PubMed ID: 4324545
    [No Abstract]   [Full Text] [Related]  

  • 34. BIOSYNTHESIS OF METHIONINE IN SACCHAROMYCES CEREVISIAE. PARTIAL PURIFICATION AND PROPERTIES OF S-ADENOSYLMETHIONINE: HOMOCYSTEINE METHYLTRANSFERASE.
    SHAPIRO SK; YPHANTIS DA; ALMENAS A
    J Biol Chem; 1964 May; 239():1551-6. PubMed ID: 14189892
    [No Abstract]   [Full Text] [Related]  

  • 35. Stimulatory factors for enzymatic biotin synthesis from dethiobiotin in cell-free extracts of Escherichia coli.
    Ohshiro T; Yamamoto M; Bui BT; Florentin D; Marquet A; Izumi Y
    Biosci Biotechnol Biochem; 1995 May; 59(5):943-4. PubMed ID: 7787312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methyl-deficient transfer ribonucleic acid in Saccharomyces cerevisiae.
    Phillips JH
    J Bacteriol; 1969 Nov; 100(2):695-700. PubMed ID: 5354941
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Escherichia coli B 5-methyltetrahydrofolate-homocysteine cobalamin methyltransferase: catalysis by a reconstituted methyl-14C-cobalamin holoenzyme and the function of S-adenosyl-l-methionine.
    Taylor RT; Hanna ML
    Arch Biochem Biophys; 1970 Apr; 137(2):453-9. PubMed ID: 4909167
    [No Abstract]   [Full Text] [Related]  

  • 38. [On the biosynthesis of inorganic polyphosphates in Neurospora crassa].
    Kulaev IS; Shimona O; Bobyk MA
    Biokhimiia; 1968; 33(3):419-34. PubMed ID: 4300424
    [No Abstract]   [Full Text] [Related]  

  • 39. Fructose-6-phosphate and AMP; effectors of proline biosynthesis in Escherichia coli.
    Baich A
    Biochem Biophys Res Commun; 1970 May; 39(3):544-50. PubMed ID: 4912201
    [No Abstract]   [Full Text] [Related]  

  • 40. Requirement of cyclic AMP for induction of GMP reductase in Escherichia coli.
    Benson CE; Brehmeyer BA; Gots JS
    Biochem Biophys Res Commun; 1971 Jun; 43(5):1089-94. PubMed ID: 4327955
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.