These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 4293783)

  • 1. Glycolytic control mechanisms. V. Kinetics of high energy phosphate intermediate changes during electrical discharge and recovery in the main organ of Electrophorus electricus.
    Williamson JR; Herczeg BE; Coles HS; Cheung WY
    J Biol Chem; 1967 Nov; 242(21):5119-24. PubMed ID: 4293783
    [No Abstract]   [Full Text] [Related]  

  • 2. Glycolytic control mechanisms. IV. Kinetics of glycolytic intermediate changes during electrical discharge and recovery in the main organ of Electrophorus electricus.
    Williamson JR; Cheung WY; Coles HS; Herczeg BE
    J Biol Chem; 1967 Nov; 242(21):5112-8. PubMed ID: 4228674
    [No Abstract]   [Full Text] [Related]  

  • 3. Phosphate metabolism in the electric organ.
    Cheng SC; Keynes RD
    Biochim Biophys Acta; 1967 Jul; 143(1):249-56. PubMed ID: 4292785
    [No Abstract]   [Full Text] [Related]  

  • 4. TRANSIENTS IN GLYCOLYTIC METABOLISM FOLLOWING ELECTRICAL ACTIVITY IN ELECTROPHORUS.
    MAITRA PK; GHOSH A; SCHOENER B; CHANCE B
    Biochim Biophys Acta; 1964 Jul; 88():112-9. PubMed ID: 14203138
    [No Abstract]   [Full Text] [Related]  

  • 5. Glycolytic control mechanisms. II. Kinetics of intermediate changes during the aerobic-anoxic transition in perfused rat heart.
    Williamson JR
    J Biol Chem; 1966 Nov; 241(21):5026-36. PubMed ID: 4224561
    [No Abstract]   [Full Text] [Related]  

  • 6. THE ELECTRON-TRANSPORT COMPONENTS OF THE MAIN ORGAN OF ELECTROPHORUS ELECTRICUS.
    CHANGE B; LEE CP; OSHINO R
    Biochim Biophys Acta; 1964 Jul; 88():105-11. PubMed ID: 14203137
    [No Abstract]   [Full Text] [Related]  

  • 7. Control of reduced diphosphopyridine nucleotide oscillations in beef heart extracts. II. Oscillations of glycolytic intermediates and adenine nucleotides.
    Frenkel R
    Arch Biochem Biophys; 1968 Apr; 125(1):157-65. PubMed ID: 4296954
    [No Abstract]   [Full Text] [Related]  

  • 8. Biochemical studies of transitions from rest to activity.
    Chance B
    Res Publ Assoc Res Nerv Ment Dis; 1967; 45():48-63. PubMed ID: 4295649
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of sleep on brain labile phosphates and metabolic rate.
    Van den Noort S; Brine K
    Am J Physiol; 1970 May; 218(5):1434-9. PubMed ID: 4245209
    [No Abstract]   [Full Text] [Related]  

  • 10. Brain metabolism in experimental uremia.
    Van den Noort S; Eckel RE; Brine KL; Hrdlicka J
    Arch Intern Med; 1970 Nov; 126(5):831-4. PubMed ID: 4248904
    [No Abstract]   [Full Text] [Related]  

  • 11. Variations of glycolytic intermediates, phosphate compounds and pyridine nucleotides after prolonged stimulation of an isolated crustacean neurone.
    Giacobini E; Grasso A
    Acta Physiol Scand; 1966; 66(1):49-57. PubMed ID: 4379932
    [No Abstract]   [Full Text] [Related]  

  • 12. Myocardial adenine nucleotides, hexose phosphates and inorganic phosphate, and the regulation of phosphofructokinase activity during fluoroacetate poisoning in the rat.
    Godoy HM; del Carmen Villarruel M
    Biochem Pharmacol; 1974 Nov; 23(22):3179-89. PubMed ID: 4155303
    [No Abstract]   [Full Text] [Related]  

  • 13. Regulation of metabolism in working muscle in vivo. II. Concentrations of adenine nucleotides, arginine phosphate, and inorganic phosphate in insect flight muscle during flight.
    Sacktor B; Hurlbut EC
    J Biol Chem; 1966 Feb; 241(3):632-4. PubMed ID: 4222257
    [No Abstract]   [Full Text] [Related]  

  • 14. [Biochemical changes in heart arrest].
    Krause EG
    Z Gesamte Inn Med; 1969 Jan; 24(2):Suppl:19-24. PubMed ID: 5795691
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of denervation on the glycolytic metabolism of the main electric organ of Electrophorus electricus (L.).
    Torres-da Matta J; Silva CB; da Matta AN; Hassón-Voloch A
    Comp Biochem Physiol B; 1985; 81(4):969-73. PubMed ID: 4042632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Acute ethanol intoxication and liver metabolism].
    Ammon HP; Estler CJ; Heim F
    Arch Int Pharmacodyn Ther; 1966 Feb; 159(2):258-68. PubMed ID: 4288153
    [No Abstract]   [Full Text] [Related]  

  • 17. [Control exercized by adrenalin on turnover time of ATP and ADP at the level of glycolysis and oxidative phosphorylations in muscle].
    Morelis R; Gautheron D
    Bull Soc Chim Biol (Paris); 1968; 50(12):2503-20. PubMed ID: 4306333
    [No Abstract]   [Full Text] [Related]  

  • 18. The effect of ethionine on the energy-producing metabolism in the rat pancreas. II. Alterations of tissue levels of adenine nucleotides, pyridine nucleotides, and glycolytic metabolites.
    Goebell H
    Horm Metab Res; 1974 Jan; 6(1):44-9. PubMed ID: 4150487
    [No Abstract]   [Full Text] [Related]  

  • 19. Calculated equilibria of phosphocreatine and adenosine phosphates during utilization of high energy phosphate by muscle.
    McGilvery RW; Murray TW
    J Biol Chem; 1974 Sep; 249(18):5845-50. PubMed ID: 4369824
    [No Abstract]   [Full Text] [Related]  

  • 20. Glycolytic and tricarboxylic acid cycle intermediates during cardiac arrest and recovery in eu-, hyper- and hypothyroid rats.
    Fath PA; Kako KJ
    J Mol Cell Cardiol; 1973 Aug; 5(4):359-73. PubMed ID: 4355338
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.