These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 4294330)

  • 1. Enzymatic omega-oxidation. II. Function of rubredoxin as the electron carrier in omega-hydroxylation.
    Peterson JA; Kusunose M; Kusunose E; Coon MJ
    J Biol Chem; 1967 Oct; 242(19):4334-40. PubMed ID: 4294330
    [No Abstract]   [Full Text] [Related]  

  • 2. Enzymatic omega-oxidation. 3. Purification and properties of rubredoxin, a component of the omega-hydroxylation system of Pseudomonas oleovorans.
    Peterson JA; Coon MJ
    J Biol Chem; 1968 Jan; 243(2):329-34. PubMed ID: 4295540
    [No Abstract]   [Full Text] [Related]  

  • 3. Enzymatic -oxidation. VI. Isolation of homogeneous reduced diphosphopyridine nucleotide-rubredoxin reductase.
    J Biol Chem; 1972 Apr; 247(7):2109-16. PubMed ID: 4335861
    [No Abstract]   [Full Text] [Related]  

  • 4. The role of putidaredoxin and P450 cam in methylene hydroxylation.
    Tyson CA; Lipscomb JD; Gunsalus IC
    J Biol Chem; 1972 Sep; 247(18):5777-84. PubMed ID: 4341491
    [No Abstract]   [Full Text] [Related]  

  • 5. Enzymatic omega-oxidation. I. Electon carriers in fatty acid and hydrocarbon hydroxylation.
    Peterson JA; Basu D; Coon MJ
    J Biol Chem; 1966 Nov; 241(21):5162-4. PubMed ID: 4380843
    [No Abstract]   [Full Text] [Related]  

  • 6. Enzymatic oxidation. VII. Reduced diphosphopyridine nucleotide-rubredoxin reductase: properties and function as an electron carrier in hydroxylation.
    Ueda T; Coon MJ
    J Biol Chem; 1972 Aug; 247(16):5010-6. PubMed ID: 4403503
    [No Abstract]   [Full Text] [Related]  

  • 7. Electron transfer from flavin to iron in the Pseudomonas oleovorans rubredoxin reductase-rubredoxin electron transfer complex.
    Lee HJ; Basran J; Scrutton NS
    Biochemistry; 1998 Nov; 37(44):15513-22. PubMed ID: 9799514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of alkyl hydroperoxides to alcohols: role of rubredoxin, an electron carrier in the bacterial hydroxylation of hydrocarbons.
    Boyer RF; Lode ET; Coon MJ
    Biochem Biophys Res Commun; 1971 Aug; 44(4):925-30. PubMed ID: 4399432
    [No Abstract]   [Full Text] [Related]  

  • 9. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ENZYMATIC OMEGA-OXIDATION OF FATTY ACIDS. II. SUBSTRATE SPECIFICITY AND OTHER PROPERTIES OF THE ENZYME SYSTEM.
    KUSUNOSE M; KUSUNOSE E; COON MJ
    J Biol Chem; 1964 Jul; 239():2135-9. PubMed ID: 14209939
    [No Abstract]   [Full Text] [Related]  

  • 11. A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase.
    Coulter ED; Kurtz DM
    Arch Biochem Biophys; 2001 Oct; 394(1):76-86. PubMed ID: 11566030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the role of superoxide in reactions catalyzed by rubredoxin of Pseudomonas oleovorans.
    May SW; Abbott BJ; Felix A
    Biochem Biophys Res Commun; 1973 Oct; 54(4):1540-5. PubMed ID: 4148231
    [No Abstract]   [Full Text] [Related]  

  • 13. BIOLOGICAL OXIDATIONS.
    MASSEY V; VEEGER C
    Annu Rev Biochem; 1963; 32():579-638. PubMed ID: 14140707
    [No Abstract]   [Full Text] [Related]  

  • 14. Enzymatic epoxidation. II. Comparison between the epoxidation and hydroxylation reactions catalyzed by the -hydroxylation system of Pseudomonas oleovorans.
    May SW; Abbott BJ
    J Biol Chem; 1973 Mar; 248(5):1725-30. PubMed ID: 4348547
    [No Abstract]   [Full Text] [Related]  

  • 15. Liver microsomal electron transport systems. II. The involvement of cytochrome b5 in the NADH-dependent hydroxylation of 3,4-benzpyrene by a reconstituted cytochrome P-448-containing system.
    West SB; Levin W; Ryan D; Vore M; Lu AY
    Biochem Biophys Res Commun; 1974 May; 58(2):516-522. PubMed ID: 4366168
    [No Abstract]   [Full Text] [Related]  

  • 16. Possible mechanism of coupled NADPH oxidase and P-450 monooxygenase action.
    Jansson I; Schenkman JB
    Adv Exp Med Biol; 1981; 136 Pt A():145-63. PubMed ID: 7344455
    [No Abstract]   [Full Text] [Related]  

  • 17. Enzymatic epoxidation. I. Alkene epoxidation by the -hydroxylation system of Pseudomonas oleovorans.
    May SW; Abbott BJ
    Biochem Biophys Res Commun; 1972 Sep; 48(5):1230-4. PubMed ID: 4341053
    [No Abstract]   [Full Text] [Related]  

  • 18. [Free oxidation in the respiratory chain as a mechanism of oxidative hydroxylation].
    Maslova GM; Raikhman LM; Skulachev VP
    Usp Sovrem Biol; 1969; 67(3):400-22. PubMed ID: 4310784
    [No Abstract]   [Full Text] [Related]  

  • 19. Omega oxygenases: nonheme-iron enzymes and P450 cytochromes.
    Coon MJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):378-85. PubMed ID: 16165094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specificity of a catabolic pathway--a lesson learned from indirect assays.
    Ribbons DW; Ota Y; Higgins IJ
    J Bacteriol; 1971 May; 106(2):702-3. PubMed ID: 4324808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.