These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 4294552)

  • 1. Model reactions for the biosynthesis of thyroxine. XI. The nature of a free radical formed in the autoxidation of 4-hydroxy-3,5-diiodophenylpyruvic acid.
    Nishinaga A; Kon H; Cahnmann HJ
    J Org Chem; 1968 Jan; 33(1):157-62. PubMed ID: 4294552
    [No Abstract]   [Full Text] [Related]  

  • 2. The role of free radicals of 4-hydroxy-3,5-diiodophenylpyruvic acid in the synthesis of thyroxine.
    Blasi F
    Biochim Biophys Acta; 1966 May; 121(1):204-6. PubMed ID: 4289198
    [No Abstract]   [Full Text] [Related]  

  • 3. Model reactions for the biosynthesis of thyroxine. XII. The nature of a thyroxine precursor formed in the synthesis of thyroxine from diiodotyrosine and its keto acid analog.
    Nishinaga A; Cahnmann HJ; Kon H; Matsuura T
    Biochemistry; 1968 Jan; 7(1):388-97. PubMed ID: 5758555
    [No Abstract]   [Full Text] [Related]  

  • 4. Enzymic pathway for thyroxine synthesis through p-hydroxy-3,5-diiodophenylpyruvic acid.
    Blasi F; Fragomele F; Covelli I
    Endocrinology; 1969 Sep; 85(3):542-51. PubMed ID: 4389637
    [No Abstract]   [Full Text] [Related]  

  • 5. Model reactions for the biosynthesis of thyroxine. Nonenzymic formation of 3,5,3'-triiodothyronine from 4-hydroxy-3-iodophenylpyruvic acid, 3,5-diiodotyrosine, and oxygen.
    Cahnmann HJ; Funakoshi K
    Biochemistry; 1970 Jan; 9(1):90-8. PubMed ID: 5411209
    [No Abstract]   [Full Text] [Related]  

  • 6. [On the synthesis of thyroxin by condensation of 3,5-diiodotyrosine and 4-hydroxy-3,5-diiodophenylpyruvic acid].
    LISSITZKY S; CHEFTEL C
    C R Hebd Seances Acad Sci; 1963 Apr; 256():3898-900. PubMed ID: 13930923
    [No Abstract]   [Full Text] [Related]  

  • 7. [Inhibition of thyroxine synthesis from diiodotyrosine and diiodohydroxy-phenylpyruvic acid by agents blocking the free radicals].
    Blasi F
    C R Seances Soc Biol Fil; 1966; 160(7):1403-8. PubMed ID: 4225196
    [No Abstract]   [Full Text] [Related]  

  • 8. On the identfication of 4-hydroxy-3,5-diiodophenylpyruvic acid in rat thyroid glands.
    Surks MI; Weinbach S; Volpert EM
    Endocrinology; 1968 Jun; 82(6):1156-62. PubMed ID: 5647597
    [No Abstract]   [Full Text] [Related]  

  • 9. MODEL REACTIONS FOR THE BIOSYNTHESIS OF THYROXINE. X. NON-ENZYMIC FORMATION OF THYROXINE AND 3,3',5'-TRIIODOTHYRONINE RESIDUES IN THYROGLOBULIN.
    TOI K; SALVATORE G; CAHNMANN HJ
    Biochim Biophys Acta; 1965 Mar; 97():523-51. PubMed ID: 14323599
    [No Abstract]   [Full Text] [Related]  

  • 10. On the metabolic activation of N-hydroxy-N-2-acetylamino-fluorene. II. Simultaneous formation of 2-nitrosofluorene and N-acetoxy-N-2-acetylaminofluorene from N-hydroxy-N-2-acetylaminofluorene via a free radical intermediate.
    Bartsch H; Traut M; Hecker E
    Biochim Biophys Acta; 1971 Jun; 237(3):556-66. PubMed ID: 4330270
    [No Abstract]   [Full Text] [Related]  

  • 11. Free radical intermediates produced by autoxidation of 1,8-dihydroxy-9-anthrone (dithranol) in pyridine.
    Martinmaa J; Vanhala L; Mustakallio KK
    Experientia; 1978 Jul; 34(7):872-3. PubMed ID: 208855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemistry and biology of spin-trapping radicals associated with halocarbon metabolism in vitro and in vivo.
    Janzen EG; Stronks HJ; Dubose CM; Poyer JL; McCay PB
    Environ Health Perspect; 1985 Dec; 64():151-70. PubMed ID: 3007086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological aspects of free-radical reactions.
    Yamazaki I; Tamura M; Nakajima R; Nakamura M
    Environ Health Perspect; 1985 Dec; 64():331-42. PubMed ID: 3007098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The oxidation of diiodotyrosine; 3:5-diiodo-4-hydroxybenzaldehyde as a possible intermediate in thyroxine formation.
    RIVERS RP
    Biochem J; 1947; 41(3):xxxix. PubMed ID: 20340547
    [No Abstract]   [Full Text] [Related]  

  • 15. TSH stimulation of diiodotyrosine--aminotransaminase in the rat thyroid.
    Knopp J; Faberova A
    Steroids Lipids Res; 1974; 5(5-6):282-5. PubMed ID: 4376625
    [No Abstract]   [Full Text] [Related]  

  • 16. Electron spin resonance study of the autoxidation of 6-aminodopamine.
    Perez-Reyes E; Mason RP
    Mol Pharmacol; 1980 Nov; 18(3):594-7. PubMed ID: 6258051
    [No Abstract]   [Full Text] [Related]  

  • 17. The peroxidase-catalyzed oxidation of thyroxine.
    Björkstén F
    Acta Chem Scand; 1966; 20(5):1438-9. PubMed ID: 5961759
    [No Abstract]   [Full Text] [Related]  

  • 18. Chemiluminescence in the autoxidation of the pyruvic acid analogues of a thyroid hormone and related molecules.
    Cilento G; Nakano M; Fukuyama H; Suwa K; Kamiya I
    Biochem Biophys Res Commun; 1974 May; 58(1):296-300. PubMed ID: 4831074
    [No Abstract]   [Full Text] [Related]  

  • 19. An electron spin resonance study of free radicals from catechol estrogens.
    Kalyanaraman B; Hintz P; Sealy RC
    Fed Proc; 1986 Sep; 45(10):2477-84. PubMed ID: 3017766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron spin resonance studies on the oxidation of rifamycin SV catalyzed by metal ions.
    Kono Y; Sugiura Y
    J Biochem; 1982 Jan; 91(1):397-401. PubMed ID: 6279586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.