BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 4296576)

  • 1. Transmission of somatic sensory volleys through ascending spinal hindlimb pathways during sleep and wakefulness.
    Carli G; Kawamura H; Pompeiano O
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1967; 298(2):163-9. PubMed ID: 4296576
    [No Abstract]   [Full Text] [Related]  

  • 2. Transmission of sensory information throug ascending spinal hindlimb pathways during sleep and wakefulness.
    Pompeiano O; Carli G; Kawamura H
    Arch Ital Biol; 1967 Nov; 105(4):529-72. PubMed ID: 4296767
    [No Abstract]   [Full Text] [Related]  

  • 3. Cerebellar responses evoked by somatic afferent volleys during sleep and waking.
    Carli G; Diete-Spiff K; Pompeiano O
    Arch Ital Biol; 1967 Nov; 105(4):499-528. PubMed ID: 4296766
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of spino-bulbo-spinal reflex volleys on flexor motoneurons of hindlimb in the cat.
    Shimamura M; Aoki M
    Brain Res; 1969 Dec; 16(2):333-49. PubMed ID: 4311719
    [No Abstract]   [Full Text] [Related]  

  • 5. Transformation of somatic afferent volleys across the prethalamic and thalamic components of the lemniscal system during the rapid eye movements of sleep.
    Ghelarducci B; Pisa M; Pompeiano O
    Electroencephalogr Clin Neurophysiol; 1970 Oct; 29(4):348-57. PubMed ID: 4097204
    [No Abstract]   [Full Text] [Related]  

  • 6. Supraspinal influences on hindlimb reflex pathways during natural sleep in the kitten.
    Iwamura Y; Kudo N; Tsuda K
    Brain Res; 1971 Oct; 33(2):379-95. PubMed ID: 4332502
    [No Abstract]   [Full Text] [Related]  

  • 7. Cerebellar unit responses to repetitive stimulation of somatic nerves.
    Arshavskii YI
    Neurosci Behav Physiol; 1972; 5(1):31-6. PubMed ID: 4350364
    [No Abstract]   [Full Text] [Related]  

  • 8. Synaptic transmission through cat lumbar ascending sensory pathways is suppressed during active sleep.
    Soja PJ; Oka JI; Fragoso M
    J Neurophysiol; 1993 Oct; 70(4):1708-12. PubMed ID: 8283225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The response to stimulation of hindlimb nerves in fetal sheep, in utero, during the different phases of electrocortical activity.
    Rigatto H; Blanco CE; Walker DW
    J Dev Physiol; 1982 Jun; 4(3):175-85. PubMed ID: 7142678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recurrent control from motor axon collaterals of Ia inhibitory pathways in the spinal cord of the cat.
    Lindström S
    Acta Physiol Scand Suppl; 1973; 392():1-43. PubMed ID: 4356646
    [No Abstract]   [Full Text] [Related]  

  • 11. Convergence in the lumbar spinal cord of pathways activated by splanchnic nerve and hind limb cutaneous nerve stimulation.
    Hancock MB; Rigamonti DD; Bryan RN
    Exp Neurol; 1973 Feb; 38(2):337-48. PubMed ID: 4347817
    [No Abstract]   [Full Text] [Related]  

  • 12. Spread of saphenous somatotopic projection map in spinal cord and hypersensitivity of the foot after chronic sciatic denervation in adult rat.
    Markus H; Pomeranz B; Krushelnycky D
    Brain Res; 1984 Mar; 296(1):27-39. PubMed ID: 6713208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Somatosensory system evoked potentials during waking behavior and sleep in the cat.
    Howe RC; Sterman MB
    Electroencephalogr Clin Neurophysiol; 1973 Jun; 34(6):605-18. PubMed ID: 4122396
    [No Abstract]   [Full Text] [Related]  

  • 14. The cat lumbar spinal cord somatotopic map is unchanged after peripheral nerve crush and regeneration.
    Lisney SJ
    Brain Res; 1983 Jul; 271(1):166-9. PubMed ID: 6883114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of the responses evoked in the cerebellar cortex by limb nerve stimulation during wakefulness and sleep.
    Marchesi GF; Markel E; Strata P
    Brain Res; 1970 Mar; 18(3):557-9. PubMed ID: 4324401
    [No Abstract]   [Full Text] [Related]  

  • 16. Control of unitary activities in cerebellothalamic pathway during wakefulness and synchronized sleep.
    Steriade M; Apostol V; Oakson G
    J Neurophysiol; 1971 May; 34(3):389-413. PubMed ID: 4327048
    [No Abstract]   [Full Text] [Related]  

  • 17. [Effect of stimulating the skin with different temperatures on the interneuron activity of the lateral horn of the lumbar segments of the spinal cord].
    Tleulin SZh
    Fiziol Zh SSSR Im I M Sechenova; 1979 Apr; 65(4):543-8. PubMed ID: 456669
    [No Abstract]   [Full Text] [Related]  

  • 18. Central effects of volleys in sensory and motor components of peripheral nerve in the stingray, Dasyatis sabina.
    Leonard RB; Rudomin P; Willis WD
    J Neurophysiol; 1978 Jan; 41(1):108-25. PubMed ID: 621538
    [No Abstract]   [Full Text] [Related]  

  • 19. Afferent volleys in limb nerves influencing impulse discharges in cerebellar cortex. I. In mossy fibers and granule cells.
    Eccles JC; Faber DS; Murphy JT; Sabah NH; Táboríková H
    Exp Brain Res; 1971 Jul; 13(1):15-35. PubMed ID: 4936708
    [No Abstract]   [Full Text] [Related]  

  • 20. Excitation of Renshaw cells in relation to orthodromic and antidromic excitation of motoneurons.
    Ryall RW; Piercey MF; Polosa C; Goldfarb J
    J Neurophysiol; 1972 Jan; 35(1):137-48. PubMed ID: 4332852
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.