These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 42966)

  • 1. Influence of beta-adrenoceptor blockade on leg blood flow and lactate release in man.
    Juhlin-Dannfelt A; Aström H
    Scand J Clin Lab Invest; 1979 Apr; 39(2):179-83. PubMed ID: 42966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variable effects of beta-adrenoceptor blockade on muscle blood flow during exercise.
    Gullestad L; Hallén J; Sejersted OM
    Acta Physiol Scand; 1993 Nov; 149(3):257-71. PubMed ID: 7906074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poor relationship between arterial [lactate] and leg net release during exercise at 4,300 m altitude.
    Brooks GA; Wolfel EE; Butterfield GE; Cymerman A; Roberts AC; Mazzeo RS; Reeves JT
    Am J Physiol; 1998 Oct; 275(4):R1192-201. PubMed ID: 9756550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haemodynamic and metabolic responses to prolonged exercise after chronic beta 1-adrenoceptor blockade in hypertensive man.
    Frisk-Holmberg M; Juhlin-Dannfelt A; Aström H
    Clin Physiol; 1985 Jun; 5(3):231-42. PubMed ID: 2860992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of acute beta-adrenergic blockade on blood and muscle lactate concentration during submaximal exercise.
    Kaiser P; Tesch PA
    Int J Sports Med; 1983 Nov; 4(4):275-7. PubMed ID: 6140229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical performance and muscle metabolism during beta-adrenergic blockade in man.
    Kaiser P
    Acta Physiol Scand Suppl; 1984; 536():1-53. PubMed ID: 6151777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal muscle glycolysis during submaximal exercise following acute beta-adrenergic blockade in man.
    Kaiser P; Tesch PA; Thorsson A; Karlsson J; Kaijser L
    Acta Physiol Scand; 1985 Mar; 123(3):285-91. PubMed ID: 2998155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of beta-blockade with beta-1-selectivity or intrinsic sympathomimetic activity on some cardiorespiratory responses to exercise.
    Yonga GO; Oyuga HW; Njeru EK
    East Afr Med J; 1993 Jul; 70(7):405-8. PubMed ID: 7904931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alpha- and beta-adrenoceptor blockade does not affect ventilation during exercise in man.
    Fagard R; Reybrouck T; Lijnen P; Amery A; Moerman E; De Schaepdryver A
    Med Sci Sports Exerc; 1980; 12(5):375-9. PubMed ID: 6109223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effects of various beta-receptor blockers on metabolic and circulatory parameters during physical exertion].
    Koebe P; Rost R; Reinke A; Nagel N; Merten U
    Arzneimittelforschung; 1985; 35(2):522-9. PubMed ID: 2859861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leg citrate metabolism at rest and during exercise in relation to diet and substrate utilization in man.
    Jansson E; Kaijser L
    Acta Physiol Scand; 1984 Oct; 122(2):145-53. PubMed ID: 6516871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of beta-blockade on coronary and systemic circulation in dogs at rest and during adaptation to exercise.
    Ehrlich W; Schrijen FV; Krausman DT; Caldini P; Brady JV
    Arch Int Pharmacodyn Ther; 1973 Aug; 204(2):213-27. PubMed ID: 4147879
    [No Abstract]   [Full Text] [Related]  

  • 13. [Effect of acute beta 1 and beta 1/beta 2 receptor blockade on carbohydrate and lipid metabolism during exertion].
    Aigner A; Muss N; Krempler F; Fenninger H; Sandhofer F
    Dtsch Med Wochenschr; 1983 Feb; 108(8):293-8. PubMed ID: 6130932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated response to exercise in patients with hypertrophic obstructive cardiomyopathy and effect of beta-adrenergic blockade on oxygen transport.
    Edwards RH; Kristinsson A; Warrell DA
    Br Heart J; 1969 May; 31(3):390. PubMed ID: 4396140
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of beta-receptor blockade on splanchnic and muscle metabolism during prolonged exercise in men.
    Ahlborg G; Juhlin-Dannfelt A
    J Appl Physiol (1985); 1994 Mar; 76(3):1037-42. PubMed ID: 7911796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of beta-adrenergic blockade on non-esterified fatty acid uptake of exercising skeletal muscle during arm cranking.
    Schrauwen P; van Baak MA
    Int J Sports Med; 1995 Oct; 16(7):439-44. PubMed ID: 8550251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral oxygenation decreases during exercise in humans with beta-adrenergic blockade.
    Seifert T; Rasmussen P; Secher NH; Nielsen HB
    Acta Physiol (Oxf); 2009 Jul; 196(3):295-302. PubMed ID: 19053964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactate release in relation to tissue lactate in human skeletal muscle during exercise.
    Jorfeldt L; Juhlin-Dannfelt A; Karlsson J
    J Appl Physiol Respir Environ Exerc Physiol; 1978 Mar; 44(3):350-2. PubMed ID: 632175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of graded restriction of perfusion on circulation and metabolism in the working leg; quantification of a human ischaemia-model.
    Sundberg CJ; Kaijser L
    Acta Physiol Scand; 1992 Sep; 146(1):1-9. PubMed ID: 1442118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of beta-blockade on leg blood flow and lactate release in exercising man.
    Aström H; Juhlin-Dannfelt A
    Acta Med Scand Suppl; 1979; 625():44-8. PubMed ID: 285574
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.