These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 4297198)
21. Effects of lanthanum ion on calcium transport by guinea-pig, rat and canine cardiac sarcoplasmic reticulum. Dunnett J; Katz AM; Nayler WG J Mol Cell Cardiol; 1978 Mar; 10(3):271-9. PubMed ID: 147945 [No Abstract] [Full Text] [Related]
23. Membrane phosphorylation and calcium transport in cardiac and skeletal muscle membranes. Sulakhe PV; St Louis PJ Gen Pharmacol; 1976 Oct; 7(5):313-9. PubMed ID: 185123 [No Abstract] [Full Text] [Related]
24. ATP-dependent calcium sequestration and calcium/ATP stoichiometry in isolated microsomes from guinea pig parotid glands. Immelmann A; Söling HD FEBS Lett; 1983 Oct; 162(2):406-10. PubMed ID: 6226538 [TBL] [Abstract][Full Text] [Related]
25. Biochemical abnormalities of the sarcoplasmic reticulum in muscular dystrophy. Samaha FJ; Gergely J N Engl J Med; 1969 Jan; 280(4):184-8. PubMed ID: 4235816 [No Abstract] [Full Text] [Related]
26. Regulation of intracellular calcium in chick embryo fibroblast: calcium uptake by the microsomal fraction. Moore L; Pastan I J Cell Physiol; 1977 May; 91(2):289-96. PubMed ID: 193865 [TBL] [Abstract][Full Text] [Related]
27. Effects of oligomycin on the (Na + + K + )-dependent adenosine triphosphatase. Robinson JD Mol Pharmacol; 1971 May; 7(3):238-46. PubMed ID: 4328421 [No Abstract] [Full Text] [Related]
29. Sarcoplasmic reticulum. VII. Properties of a phosphoprotein intermediate implicated in calcium transport. Martonosi A J Biol Chem; 1969 Feb; 244(4):613-20. PubMed ID: 4238763 [No Abstract] [Full Text] [Related]
30. The involvement of sarcotubular membranes in genetic muscular dystrophy. Scales D; Sabbadini R; Inesi G Biochim Biophys Acta; 1977 Mar; 465(3):535-49. PubMed ID: 138444 [TBL] [Abstract][Full Text] [Related]
31. ATP-dependent calcium accumulation in brain microsomes. Enhancement by phosphate and oxalate. Trotta EE; de Meis L Biochim Biophys Acta; 1975 Jun; 394(2):239-47. PubMed ID: 124599 [TBL] [Abstract][Full Text] [Related]
32. Carbamylphosphate, a preferential substrate of K+-dependent phosphatase. Yoshida H; Izumi F; Nagai K Biochim Biophys Acta; 1966 May; 120(1):183-6. PubMed ID: 4289763 [No Abstract] [Full Text] [Related]
33. Uptake of calcium ions into microsomes isolated from Physarum polycephalum. Kato T; Tonomura Y J Biochem; 1977 Jan; 81(1):207-13. PubMed ID: 139403 [TBL] [Abstract][Full Text] [Related]
34. Characterization of Ca2+ transport and enzyme activity in microsomes isolated from guinea-pig stomach smooth muscle. Miyagawa M; Sakai Y Comp Biochem Physiol A Comp Physiol; 1985; 80(4):565-70. PubMed ID: 2859140 [TBL] [Abstract][Full Text] [Related]
35. Superprecipitation and adenosine triphosphatase activity of myosin B in Duchenne muscular dystrophy. Furukawa T; Peter JB Neurology; 1971 Sep; 21(9):920-4. PubMed ID: 4255122 [No Abstract] [Full Text] [Related]
36. The role of phospholipids in the ATP-ase activity of skeletal muscle microsomes. Martonosi A Biochem Biophys Res Commun; 1967 Dec; 29(5):753-7. PubMed ID: 4229608 [No Abstract] [Full Text] [Related]
38. A comparison of microsomal (Na+ + K+)-ATPase with K+-acetylphosphatase. Israel Y; Titus E Biochim Biophys Acta; 1967 Jul; 139(2):450-9. PubMed ID: 4291926 [No Abstract] [Full Text] [Related]
39. [A comparison of histochemical features of some specific phosphatases in progressive muscular dystrophy, in neurogenic myopathies in man and in the denervated rat muscle (author's transl)]. Schiffer D; Giordana MT; Palmucci L; Rolfo F; Ardizzone G Riv Patol Nerv Ment; 1974; 95(2):108-16. PubMed ID: 4375847 [No Abstract] [Full Text] [Related]
40. Active calcium transport by porcine thyroid microsomes. Nakamura Y; Miyamoto T; Koono M; Ohtaki S Endocrinology; 1986 Nov; 119(5):2058-65. PubMed ID: 2945712 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]