These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 4297471)

  • 1. Participation of aminoacyl transfer ribonucleic acid in aminoacyl phosphatidylglycerol synthesis. II. Specificity of alanyl phosphatidylglycerol synthetase.
    Gould RM; Thornton MP; Liepkalns V; Lennarz WJ
    J Biol Chem; 1968 Jun; 243(11):3096-104. PubMed ID: 4297471
    [No Abstract]   [Full Text] [Related]  

  • 2. Participation of aminoacyl transfer ribonucleic acid in aminoacyl phosphatidylglycerol synthesis. I. Specificity of lysyl phosphatidylglycerol synthetase.
    Nesbitt JA; Lennarz WJ
    J Biol Chem; 1968 Jun; 243(11):3088-95. PubMed ID: 5653192
    [No Abstract]   [Full Text] [Related]  

  • 3. Biosynthesis of aminoacyl derivatives of phosphatidylglycerol.
    Gould RM; Lennarz WJ
    Biochem Biophys Res Commun; 1967 Feb; 26(4):512-5. PubMed ID: 4291861
    [No Abstract]   [Full Text] [Related]  

  • 4. Properties of transfer ribonucleic acid and aminoacyl transfer ribonucleic acid synthetases from an extremely halophilic bacterium.
    Griffiths E; Bayley ST
    Biochemistry; 1969 Feb; 8(2):541-51. PubMed ID: 4893575
    [No Abstract]   [Full Text] [Related]  

  • 5. The specificity of enzymic reactions. Aminoacyl-soluble RNA ligases.
    Loftfield RB; Eigner EA
    Biochim Biophys Acta; 1966 Dec; 130(2):426-48. PubMed ID: 4291467
    [No Abstract]   [Full Text] [Related]  

  • 6. The effect of sodium chloride on esterification of leucine to transfer ribonucleic acid by heterologous aminoacyl transfer ribonucleic acid synthetases.
    Peterkofsky A; Gee SJ; Jesensky C
    Biochemistry; 1966 Sep; 5(9):2789-99. PubMed ID: 5336031
    [No Abstract]   [Full Text] [Related]  

  • 7. [Dissociation of 2 enzymatic activities from isoleucyl-ribonucleic acid synthetase of "Bacillus stearothermophilus"].
    Charlier J; Grosjean H
    Arch Int Physiol Biochim; 1966 Nov; 74(5):914-5. PubMed ID: 4165990
    [No Abstract]   [Full Text] [Related]  

  • 8. The role of transfer ribonucleic acid in the pyrophsphate exchange reaction of arginine-transfer ribonucleic acid synthetase.
    Mitra K; Mehler AH
    J Biol Chem; 1966 Nov; 241(21):5161-2. PubMed ID: 4288729
    [No Abstract]   [Full Text] [Related]  

  • 9. Biosynthesis of the peptidoglycan of bacterial cell walls. 8. Specificity in the utilization of L-alanyl transfer ribonucleic acid for interpeptide bridge synthesis in Arthrobacter crystallopoietes.
    Roberts WS; Petit JF; Strominger JL
    J Biol Chem; 1968 Feb; 243(4):768-72. PubMed ID: 5638593
    [No Abstract]   [Full Text] [Related]  

  • 10. Sedimentation studies on aminoacyl-sRNA synthetase and activation of aminoacyl-sRNA transfer factor.
    Momose K; Kaji A
    Arch Biochem Biophys; 1965 Aug; 111(2):245-52. PubMed ID: 5324208
    [No Abstract]   [Full Text] [Related]  

  • 11. Valine transfer ribonucleic acid. I. Chromatographic study of valine tRNA modifications during Bacillus subtilis growth.
    Heyman T; Seror S; Desseaux B; Legault-Demare J
    Biochim Biophys Acta; 1967; 145(3):596-604. PubMed ID: 4965167
    [No Abstract]   [Full Text] [Related]  

  • 12. Substrate specificity of O-L-lysylphosphatidylglycerol synthetase. Enzymatic studies on the structure of O-L-lysylphosphatidylglycerol.
    Lennarz WJ; Bonsen PP; van Deenen LL
    Biochemistry; 1967 Aug; 6(8):2307-12. PubMed ID: 6049461
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies on the formation of transfer ribonucleic acid-ribosome complexes. II. A possible site on the 50 S subunit protecting aminoacyl transfer ribonucleic acid from deacylation.
    Pestka S
    J Biol Chem; 1967 Nov; 242(21):4939-47. PubMed ID: 4862426
    [No Abstract]   [Full Text] [Related]  

  • 14. Biosynthesis of the peptidoglycan of bacterial cell walls. IX. Purification and properties of glycyl transfer ribonucleic acid synthetase from Staphylococcus aureus.
    Niyomporn B; Dahl JL; Strominger JL
    J Biol Chem; 1968 Feb; 243(4):773-8. PubMed ID: 4295604
    [No Abstract]   [Full Text] [Related]  

  • 15. Specificity of AAG codon recognition by lysyl transfer ribonucleic acid from yeast.
    Mitra SK; Ley AN; Smith CJ
    J Biol Chem; 1971 Sep; 246(18):5854-6. PubMed ID: 4938043
    [No Abstract]   [Full Text] [Related]  

  • 16. An assessment of polynucleotide inhibition studies of aminoacyl-transfer ribonucleic acid synthetases.
    Holten VZ; Jacobson KB
    Biochemistry; 1967 May; 6(5):1293-7. PubMed ID: 4962495
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of Tris and dimethylsulfoxide on the aminoacylation of Escherichia coli valine transfer RNA by Neurospora crassa phenylalanyl transfer RNA synthetase.
    Ritter PO; Kull FJ; Jacobson KB
    Biochim Biophys Acta; 1969 Apr; 179(2):524-6. PubMed ID: 4890606
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of proflavine on the binding of isoleucine to transfer RNA.
    Werenne J; Grosjean H; Chantrenne H
    Biochim Biophys Acta; 1966 Dec; 129(3):585-93. PubMed ID: 5337974
    [No Abstract]   [Full Text] [Related]  

  • 19. Evolutionary conservation of the synthetase recognition site of alanine transfer ribonucleic acid.
    Anderson WF
    Biochemistry; 1969 Sep; 8(9):3687-91. PubMed ID: 4897947
    [No Abstract]   [Full Text] [Related]  

  • 20. Transfer RNA as a cofactor coupling amino acid synthesis with that of protein.
    Wilcox M; Nirenberg M
    Proc Natl Acad Sci U S A; 1968 Sep; 61(1):229-36. PubMed ID: 4972364
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.