BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 4297674)

  • 21. Couplings between the sites for methionine and adenosine 5'-triphosphate in the amino acid activation reaction catalyzed by trypsin-modified methionyl-transfer RNA synthetase from Escherichia coli.
    Fayat G; Fromant M; Blanquet S
    Biochemistry; 1977 May; 16(11):2570-9. PubMed ID: 193563
    [No Abstract]   [Full Text] [Related]  

  • 22. Subunits, composition, and related properties of succinyl coenzyme A synthetase.
    Leitzmann C; Wu JY; Boyer PD
    Biochemistry; 1970 May; 9(11):2338-46. PubMed ID: 4912713
    [No Abstract]   [Full Text] [Related]  

  • 23. Isoleucyl-tRNA synthetase. A fluorescence study of the binding properties of the synthetase from Escherichia coli.
    Penzer GR; Bennett EL; Calvin M
    Eur J Biochem; 1971 May; 20(1):1-13. PubMed ID: 4325355
    [No Abstract]   [Full Text] [Related]  

  • 24. Studies on methionyl transfer RNA synthetase from Escherichia coli K12. Amino acid composition and relation of sulfhydryl groups to enzyme activities.
    Lawrence FJ
    Eur J Biochem; 1970 Sep; 15(3):436-41. PubMed ID: 4917101
    [No Abstract]   [Full Text] [Related]  

  • 25. Purification and properties of lysyl transfer ribonucleic acid synthetase from bakers' yeast.
    Chlumecká V; Von Tigerstrom M; D'Obrenan P; Smith CJ
    J Biol Chem; 1969 Oct; 244(20):5481-8. PubMed ID: 4310598
    [No Abstract]   [Full Text] [Related]  

  • 26. Succinate thiokinase of Escherichia coli. Purification, phosphorylation of the enzyme, and exchange reactions catalyzed by the enzyme.
    Grinnell FL; Nishimura JS
    Biochemistry; 1969 Feb; 8(2):562-8. PubMed ID: 4240087
    [No Abstract]   [Full Text] [Related]  

  • 27. Human placental tryptophanyl transfer ribonucleic acid synthetase. Purification and subunit structure.
    Penneys NS; Muench KH
    Biochemistry; 1974 Jan; 13(3):560-5. PubMed ID: 4358951
    [No Abstract]   [Full Text] [Related]  

  • 28. Regulation of glutamine synthetase. IV. Reversible dissociation and inactivation of glutamine synthetase from Escherichia coli by the concerted action of EDTA and urea.
    Woolfolk CA; Stadtman ER
    Arch Biochem Biophys; 1967 Oct; 122(1):174-89. PubMed ID: 4965536
    [No Abstract]   [Full Text] [Related]  

  • 29. Adenosine triphosphate: glutamine synthetase adenylyltransferase of Escherichia coli: two active molecular forms.
    Hennig SB; Anderson WB; Ginsburg A
    Proc Natl Acad Sci U S A; 1970 Dec; 67(4):1761-8. PubMed ID: 4923119
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. I. Purification and properties.
    Lapointe J; Söll D
    J Biol Chem; 1972 Aug; 247(16):4966-74. PubMed ID: 4341531
    [No Abstract]   [Full Text] [Related]  

  • 31. [Purification and some properties of rat liver seryl-tRNA synthetase].
    Rouge M
    Biochim Biophys Acta; 1969 Feb; 171(2):342-51. PubMed ID: 5773438
    [No Abstract]   [Full Text] [Related]  

  • 32. The biosynthesis of folic acid. IX. Purification and properties of the enzymes required for the formation of dihydropteroic acid.
    Richey DP; Brown GM
    J Biol Chem; 1969 Mar; 244(6):1582-92. PubMed ID: 4304228
    [No Abstract]   [Full Text] [Related]  

  • 33. The aminoacylation of transfer ribonucleic acid. Recognition of methionine by Escherichia coli methionyl-transfer ribonucleic acid synthetase.
    Old JM; Jones DS
    Biochem J; 1977 Aug; 165(2):367-73. PubMed ID: 336037
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phenylalanine tRNA synthetase from Drosophila melanogaster. I. L-phenylalanine activation optima for pH, temperature and Mg2+ estimation of molecular weight.
    Christopher CW; Jones ME; Stafford DW
    Biochim Biophys Acta; 1971 Feb; 228(3):682-7. PubMed ID: 4324635
    [No Abstract]   [Full Text] [Related]  

  • 35. Interrelation between transfer RNA and amino-acid-activating sites of methionyl transfer RNA synthetase from Escherichia coli.
    Jacques Y; Blanquet S
    Eur J Biochem; 1977 Oct; 79(2):433-41. PubMed ID: 336359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The methionine-repressible homoserine dehydrogenase and aspartokinase activities of Escherichia coli K 12. Preparation of the homogeneous protein catalyzing the two activities. Molecular weight of the native enzyme and of its subunits.
    Falcoz-Kelly F; van Rapenbusch R; Cohen GN
    Eur J Biochem; 1969 Mar; 8(1):146-52. PubMed ID: 4889171
    [No Abstract]   [Full Text] [Related]  

  • 37. Purification and properties of the L-cysteinyl ribonucleic acid synthetase of bakers' yeast.
    James HL; Bucovaz ET
    J Biol Chem; 1969 Jun; 244(12):3210-6. PubMed ID: 4307312
    [No Abstract]   [Full Text] [Related]  

  • 38. The biochemical characterization of two mutant arginyl transfer ribonucleic acid synthetases from Escherichia coli K-12.
    Hirshfield IN; Bloemers HP
    J Biol Chem; 1969 Jun; 244(11):2911-6. PubMed ID: 4890761
    [No Abstract]   [Full Text] [Related]  

  • 39. Chloroquine and synthesis of aminoacyl transfer ribonucleic acids. Tryptophanyl transfer ribonucleic acid synthetase of Escherichia coli and tryptophanyladenosine triphosphate formation.
    Muench KH
    Biochemistry; 1969 Dec; 8(12):4872-9. PubMed ID: 4312458
    [No Abstract]   [Full Text] [Related]  

  • 40. Aminoacyl transfer RNA formation. 3. Mechanism of aminoacylation stimulated by polyamines.
    Matsuzaki K; Takeda Y
    Biochim Biophys Acta; 1973 May; 308(3):339-51. PubMed ID: 4351152
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.