These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 4298226)

  • 1. Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene.
    Gibson DT; Koch JR; Kallio RE
    Biochemistry; 1968 Jul; 7(7):2653-62. PubMed ID: 4298226
    [No Abstract]   [Full Text] [Related]  

  • 2. Oxidative degradation of aromatic hydrocarbons by microorganisms. II. Metabolism of halogenated aromatic hydrocarbons.
    Gibson DT; Koch JR; Schuld CL; Kallio RE
    Biochemistry; 1968 Nov; 7(11):3795-802. PubMed ID: 5722247
    [No Abstract]   [Full Text] [Related]  

  • 3. Initial reactions in the bacterial degradation of aromatic hydrocarbons.
    Gibson DT
    Zentralbl Bakteriol Orig B; 1976 Jul; 162(1-2):157-68. PubMed ID: 998044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The degradation of p-toluenesulfonate by a Pseudomonas.
    Focht DD; Williams FD
    Can J Microbiol; 1970 May; 16(5):309-16. PubMed ID: 5419800
    [No Abstract]   [Full Text] [Related]  

  • 5. Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monoxygenase genes.
    Cavalca L; Dell'Amico E; Andreoni V
    Appl Microbiol Biotechnol; 2004 May; 64(4):576-87. PubMed ID: 14624316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological attributes of microbial BTEX degradation in oxygen-limited environments.
    Olsen RH; Mikesell MD; Kukor JJ; Byrne AM
    Environ Health Perspect; 1995 Jun; 103 Suppl 5(Suppl 5):49-51. PubMed ID: 8565910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate interactions during the biodegradation of BTEX and THF mixtures by Pseudomonas oleovorans DT4.
    Zhou YY; Chen DZ; Zhu RY; Chen JM
    Bioresour Technol; 2011 Jun; 102(12):6644-9. PubMed ID: 21511464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed evolution of biphenyl dioxygenase: emergence of enhanced degradation capacity for benzene, toluene, and alkylbenzenes.
    Suenaga H; Mitsuoka M; Ura Y; Watanabe T; Furukawa K
    J Bacteriol; 2001 Sep; 183(18):5441-4. PubMed ID: 11514531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on methanol-oxidizing bacteria. I. Isolation and growth studies.
    Mehta RJ
    Antonie Van Leeuwenhoek; 1973; 39(2):295-302. PubMed ID: 4352355
    [No Abstract]   [Full Text] [Related]  

  • 10. The degradation of trans-ferulic acid by Pseudomonas acidovorans.
    Toms A; Wood JM
    Biochemistry; 1970 Jan; 9(2):337-43. PubMed ID: 4312851
    [No Abstract]   [Full Text] [Related]  

  • 11. Genetic organization and regulation of a meta cleavage pathway for catechols produced from catabolism of toluene, benzene, phenol, and cresols by Pseudomonas pickettii PKO1.
    Kukor JJ; Olsen RH
    J Bacteriol; 1991 Aug; 173(15):4587-94. PubMed ID: 1856161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Biochemical and genetic studies on decomposition aromatic compounds by Pseudomonas].
    Nakazawa A
    Nihon Saikingaku Zasshi; 1976 Mar; 31(2):285-99. PubMed ID: 787576
    [No Abstract]   [Full Text] [Related]  

  • 13. Kinetics and simulations of substrate interactions during the biodegradation of benzene, toluene, p-xylene and styrene.
    Song J; Shin S; Jang HS; Hwang SJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(7):1027-35. PubMed ID: 22486672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures.
    Jahn MK; Haderlein SB; Meckenstock RU
    Appl Environ Microbiol; 2005 Jun; 71(6):3355-8. PubMed ID: 15933041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The metabolism of benzoate and methylbenzoates via the meta-cleavage pathway by Pseudomonas arvilla mt-2.
    Murray K; Duggleby CJ; Sala-Trepat JM; Williams PA
    Eur J Biochem; 1972 Jul; 28(3):301-10. PubMed ID: 4342906
    [No Abstract]   [Full Text] [Related]  

  • 16. Engineering hybrid pseudomonads capable of utilizing a wide range of aromatic hydrocarbons and of efficient degradation of trichloroethylene.
    Suyama A; Iwakiri R; Kimura N; Nishi A; Nakamura K; Furukawa K
    J Bacteriol; 1996 Jul; 178(14):4039-46. PubMed ID: 8763929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benzene metabolism of Moraxella species.
    Högn T; Jaenicke L
    Eur J Biochem; 1972 Oct; 30(2):369-75. PubMed ID: 4351441
    [No Abstract]   [Full Text] [Related]  

  • 18. Biocatalytic synthesis of polycatechols from toxic aromatic compounds.
    Ward G; Parales RE; Dosoretz CG
    Environ Sci Technol; 2004 Sep; 38(18):4753-7. PubMed ID: 15487783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response surface optimization of dissolved oxygen and nitrogen sources for the biodegradation of MTBE and BTEX.
    Lin CW; Yen CH; Lin HC; Tran DT
    Biodegradation; 2010 Jun; 21(3):393-401. PubMed ID: 19888659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanisms of microbial oxidations of petroleum hydrocarbons.
    van der Linden AC; Thijsse GJ
    Adv Enzymol Relat Areas Mol Biol; 1965; 27():469-546. PubMed ID: 4883740
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.