These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 4298226)
41. Protocatechuate 3,4-dioxygenase. IV. Preparation and properties of apo- and reconstituted enzymes. Fujiwara M; Nozaki M Biochim Biophys Acta; 1973 Dec; 327(2):306-12. PubMed ID: 4205072 [No Abstract] [Full Text] [Related]
42. Tandem biodegradation of BTEX components by two Pseudomonas sp. Attaway HH; Schmidt MG Curr Microbiol; 2002 Jul; 45(1):30-6. PubMed ID: 12029524 [TBL] [Abstract][Full Text] [Related]
43. Formation of (+)-cis-2,3-dihydroxy-1-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida. Gibson DT; Hensley M; Yoshioka H; Mabry TJ Biochemistry; 1970 Mar; 9(7):1626-30. PubMed ID: 4314232 [No Abstract] [Full Text] [Related]
44. First evidence of aerobic biodegradation of BTEX compounds by pure cultures of Marinobacter. Berlendis S; Cayol JL; Verhé F; Laveau S; Tholozan JL; Ollivier B; Auria R Appl Biochem Biotechnol; 2010 Apr; 160(7):1992-9. PubMed ID: 19701611 [TBL] [Abstract][Full Text] [Related]
45. Oxidative release of nitrite from 2-nitrotoluene by a three-component enzyme system from Pseudomonas sp. strain JS42. An D; Gibson DT; Spain JC J Bacteriol; 1994 Dec; 176(24):7462-7. PubMed ID: 8002568 [TBL] [Abstract][Full Text] [Related]
46. The metabolic divergence in the meta cleavage of catechols by Pseudomonas putida NCIB 10015. Physiological significance and evolutionary implications. Sala-Trepat JM; Murray K; Williams PA Eur J Biochem; 1972 Jul; 28(3):347-56. PubMed ID: 4342908 [No Abstract] [Full Text] [Related]
47. Inhibitory effects of catechol accumulation on benzene biodegradation in Pseudomonas putida F1 cultures. Muñoz R; Díaz LF; Bordel S; Villaverde S Chemosphere; 2007 Jun; 68(2):244-52. PubMed ID: 17316748 [TBL] [Abstract][Full Text] [Related]
48. [Bacterial nitrate reductases. I. Substrates, particulate state, and inhibitors of enzyme A]. Pichinoty F Arch Mikrobiol; 1969; 68(1):51-64. PubMed ID: 4985534 [No Abstract] [Full Text] [Related]
49. Bacterial metabolism of arylsulfonates. I. Benzene sulfonate as growth substrate for Pseudomonas testosteroni H-8. Ripin MJ; Noon KF; Cook TM Appl Microbiol; 1971 Mar; 21(3):495-9. PubMed ID: 5553286 [TBL] [Abstract][Full Text] [Related]
50. [Microbial degradation of aromatic compounds]. Lingens F Schriftenr Ver Wasser Boden Lufthyg; 1989; 80():39-60. PubMed ID: 2658038 [TBL] [Abstract][Full Text] [Related]
51. Influence of side-chain substituents on the position of cleavage of the benzene ring by Pseudomonas fluorescens. Seidman MM; Toms A; Wood JM J Bacteriol; 1969 Mar; 97(3):1192-7. PubMed ID: 5776526 [TBL] [Abstract][Full Text] [Related]
52. ENZYMATIC FORMATION OF CATECHOL FROM ANTHRANILIC ACID. TANIUCHI H; HATANAKA M; KUNO S; HAYAISHI O; NAKAJIMA M; KURIHARA N J Biol Chem; 1964 Jul; 239():2204-11. PubMed ID: 14209949 [No Abstract] [Full Text] [Related]
53. Biotransformation of various substituted aromatic compounds to chiral dihydrodihydroxy derivatives. Raschke H; Meier M; Burken JG; Hany R; Müller MD; Van Der Meer JR; Kohler HP Appl Environ Microbiol; 2001 Aug; 67(8):3333-9. PubMed ID: 11472901 [TBL] [Abstract][Full Text] [Related]
54. Inverse modeling of BTEX dissolution and biodegradation at the Bemidji, MN crude-oil spill site. Essaid HI; Cozzarelli IM; Eganhouse RP; Herkelrath WN; Bekins BA; Delin GN J Contam Hydrol; 2003 Dec; 67(1-4):269-99. PubMed ID: 14607480 [TBL] [Abstract][Full Text] [Related]
55. Biodegradation of Benzene, Toluene, Ethylbenzene, and o-, m-, and p-Xylenes by the Newly Isolated Bacterium Comamonas sp. JB. Jiang B; Zhou Z; Dong Y; Tao W; Wang B; Jiang J; Guan X Appl Biochem Biotechnol; 2015 Jul; 176(6):1700-8. PubMed ID: 26018344 [TBL] [Abstract][Full Text] [Related]
56. Studies on oxidative phosphorylation. XVI. Sulfhydryl involvement in the energy-transfer pathway. Kurup CK; Sanadi DR Biochemistry; 1968 Dec; 7(12):4483-91. PubMed ID: 4302625 [No Abstract] [Full Text] [Related]
57. Benzene and toluene biodegradation down gradient of a zero-valent iron permeable reactive barrier. Chen L; Liu F; Liu Y; Dong H; Colberg PJ J Hazard Mater; 2011 Apr; 188(1-3):110-5. PubMed ID: 21316847 [TBL] [Abstract][Full Text] [Related]
58. Mesophilic and thermophilic BTEX substrate interactions for a toluene-acclimatized biofilter. Strauss JM; Riedel KJ; Du Plessis CA Appl Microbiol Biotechnol; 2004 Jun; 64(6):855-61. PubMed ID: 14666388 [TBL] [Abstract][Full Text] [Related]
59. Reutilization of waste scrap tyre as the immobilization matrix for the enhanced bioremoval of a monoaromatic hydrocarbons, methyl tert-butyl ether, and chlorinated ethenes mixture from water. Lu Q; de Toledo RA; Xie F; Li J; Shim H Sci Total Environ; 2017 Apr; 583():88-96. PubMed ID: 28109662 [TBL] [Abstract][Full Text] [Related]
60. Development of a groundwater biobarrier for the removal of polycyclic aromatic hydrocarbons, BTEX, and heterocyclic hydrocarbons. Tiehm A; Müller A; Alt S; Jacob H; Schad H; Weingran C Water Sci Technol; 2008; 58(7):1349-55. PubMed ID: 18957746 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]