BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 4298489)

  • 1. Inhibition and release of respiration in particles from Alcaligenes faecalis.
    Scocca JJ; Pinchot GB
    Arch Biochem Biophys; 1968 Mar; 124(1):206-17. PubMed ID: 4298489
    [No Abstract]   [Full Text] [Related]  

  • 2. The Pi-incorporating factor of Alcaligenes faecalis.
    Pandit-Hovenkamp HG
    Biochim Biophys Acta; 1965 Jun; 99(3):552-5. PubMed ID: 4284666
    [No Abstract]   [Full Text] [Related]  

  • 3. The properties of dicyclohexylcarbodiimide as an inhibitor of oxidative phosphorylation.
    Beechey RB; Roberton AM; Holloway CT; Knight IG
    Biochemistry; 1967 Dec; 6(12):3867-79. PubMed ID: 4294775
    [No Abstract]   [Full Text] [Related]  

  • 4. An intermediate of oxidative phosphorylation from Alcaligenes faecalis.
    Pinchot GB; Salmon BJ
    Arch Biochem Biophys; 1966 Aug; 115(2):345-59. PubMed ID: 4291036
    [No Abstract]   [Full Text] [Related]  

  • 5. The mechanism of uncoupling of oxidative phosphorylation by 2,4-dinitrophenol.
    Pinchot GB
    J Biol Chem; 1967 Oct; 242(20):4577-83. PubMed ID: 4964808
    [No Abstract]   [Full Text] [Related]  

  • 6. Oxidative phosphorylation coupled to oxygen uptake and nitrate reduction in Micrococcus denitrificans.
    John P; Whatley FR
    Biochim Biophys Acta; 1970 Sep; 216(2):342-52. PubMed ID: 4323434
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of oligomycin on NADH oxidation and its coupled phosphorylation with the particulate fraction from dark aerobically grown Rhodospirillum rubrum.
    Yamashita J; Kamen MD; Horio T
    Arch Mikrobiol; 1969; 66(4):304-14. PubMed ID: 4317718
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of sodium and potassium ions on mitochondrial oxidative phosphorylation. Studies with arsenate.
    Sandoval F; Gómez-Puyou A; Tuena M; Chávez E; Peña A
    Biochemistry; 1970 Feb; 9(3):684-9. PubMed ID: 4244467
    [No Abstract]   [Full Text] [Related]  

  • 9. Conditions in vitro which affect respiratory control and capacity for respiration-linked phosphorylation in brown adipose tissue mitochondria.
    Grav HJ; Pedersen JI; Christiansen EN
    Eur J Biochem; 1970 Jan; 12(1):11-23. PubMed ID: 4313979
    [No Abstract]   [Full Text] [Related]  

  • 10. Uptake and light activated esterification of 32P by isolated chloroplasts.
    Harvey MJ; Brown AP
    Biochim Biophys Acta; 1969 Aug; 180(3):520-8. PubMed ID: 5810848
    [No Abstract]   [Full Text] [Related]  

  • 11. An exchange enzyme-catalyzing incorporation of inorganic phosphate into adenosine diphosphate in Alcaligenes faecalis.
    Adolfsen R; Moudrianakis EN
    Arch Biochem Biophys; 1972 Jan; 148(1):185-95. PubMed ID: 4333687
    [No Abstract]   [Full Text] [Related]  

  • 12. Phosphorylation of protein in liver and kidney mitochondria of the rat.
    Zajac J
    Acta Biochim Pol; 1968; 15(4):307-15. PubMed ID: 4305781
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies on the stabilization of an oxidative phosphorylation system. I. Resistance of a phosphorylating system of submitochondrial particles to trypsin, due to phosphorylation of ADP.
    Luzikov VN; Saks VA; Kupriyanov VV
    Biochim Biophys Acta; 1971 Nov; 253(1):46-57. PubMed ID: 4331272
    [No Abstract]   [Full Text] [Related]  

  • 14. Purification and properties of 2 soluble coupling factors of oxidative phosphorylation from Alcaligenes faecalis.
    Adolfsen R; Moudrianakis EN
    Biochemistry; 1971 Jun; 10(12):2247-53. PubMed ID: 4255956
    [No Abstract]   [Full Text] [Related]  

  • 15. Phosphorylation of bound adenosine monophosphate in the electron transfer particle.
    Ozawa T
    J Biochem; 1970 Feb; 67(2):157-74. PubMed ID: 4986209
    [No Abstract]   [Full Text] [Related]  

  • 16. Oxidative phosphorylation in Azotobacter vinelandii particles. Phosphorylation sites and respiratory control.
    Eilermann LJ; Pandit-Hovenkamp HG; Kolk AH
    Biochim Biophys Acta; 1970 Jan; 197(1):25-30. PubMed ID: 4312654
    [No Abstract]   [Full Text] [Related]  

  • 17. Phosphorylation coupled to oxidation of thiol groups (GSH) by cytochrome c with disulfide (GSSG) as an essential catalyst. I. Demonstration of ADP formation from AMP and HPO4 2-.
    Painter AA; Hunter FE
    Biochem Biophys Res Commun; 1970 Jul; 40(2):360-8. PubMed ID: 4319825
    [No Abstract]   [Full Text] [Related]  

  • 18. Evaluation of electron transport as the basis of adenosine triphosphate synthesis after acid-base transition by spinach chloroplasts.
    Miles CD; Jagendorf AT
    Biochemistry; 1970 Jan; 9(2):429-34. PubMed ID: 5412667
    [No Abstract]   [Full Text] [Related]  

  • 19. Photosynthetic control in isolated spinach chloroplasts with endogenous and artificial electron acceptors.
    Hall DO; Reeves SG; Baltscheffsky H
    Biochem Biophys Res Commun; 1971 Apr; 43(2):359-66. PubMed ID: 4397030
    [No Abstract]   [Full Text] [Related]  

  • 20. Kinetic characterization of oxidative phosphorylation in Alcaligenes faecalis.
    Adolfsen R; Moudrianakis EN
    Biochemistry; 1971 Feb; 10(3):434-40. PubMed ID: 5543971
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.