These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 43)

  • 1. Modification of arginine and lysine in proteins with 2,4-pentanedione.
    Gilbert HF; O'Leary MH
    Biochemistry; 1975 Nov; 14(23):5194-9. PubMed ID: 43
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of lysyl residues of dihydrofolate reductase with 2,4-pentanedione.
    Otwell HB; Cipollo KL; Dunlap RB
    Biochim Biophys Acta; 1979 Jun; 568(2):297-306. PubMed ID: 486485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction of essential lysyl residues of pig heart diphosphyridine nucleotide dependent isocitrate dehydrogenase with 2,4-pentanedione.
    Hayman S; Colman RF
    Biochemistry; 1977 Mar; 16(5):998-1005. PubMed ID: 191059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible modification of amino groups in aspartate aminotransferase.
    Gilbert HF; O'Leary MH
    Biochim Biophys Acta; 1977 Jul; 483(1):79-89. PubMed ID: 18199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of lysine and arginine residues of lysozyme and the effect on enzymatic activity.
    Davies RC; Neuberger A
    Biochim Biophys Acta; 1969 Apr; 178(2):306-17. PubMed ID: 5772407
    [No Abstract]   [Full Text] [Related]  

  • 6. [Influence of the modification of Phe-tRNA synthetase from Escherichia coli by lysine- and arginine-specific reagent on the ionic interactions of the enzyme with tRNA Phe].
    Gorshkova NI; Lavrik OI
    Mol Biol (Mosk); 1979; 13(4):788-97. PubMed ID: 381896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of amino acids and bovine pancreatic ribonuclease A by kethoxal.
    Iijima H; Patrzyc H; Bello J
    Biochim Biophys Acta; 1977 Mar; 491(1):305-16. PubMed ID: 14699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Essential arginine residues for catalytic and regulatory functions of alpha-ketoglutarate dehydrogenase from pigeon breast muscle.
    Stafeeva OA; Gomazkova VS; Severin SE
    Biochem Int; 1983 Mar; 6(3):315-21. PubMed ID: 6433927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subunit interactions in horse spleen apoferritin. Dissociation by extremes of pH.
    Crichton RR; Bryce CF
    Biochem J; 1973 Jun; 133(2):289-99. PubMed ID: 4737425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of the reconstituted mitochondrial oxoglutarate carrier by arginine-specific reagents.
    Stipani I; Mangiullo G; Stipani V; Daddabbo L; Natuzzi D; Palmieri F
    Arch Biochem Biophys; 1996 Jul; 331(1):48-54. PubMed ID: 8660682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of functional arginine residues in ribonuclease A and lysozyme.
    Patthy L; Smith EL
    J Biol Chem; 1975 Jan; 250(2):565-9. PubMed ID: 1112778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical modification of critical catalytic residues of lysine, arginine, and tryptophan in human glucose phosphate isomerase.
    Lu HS; Talent JM; Gracy RW
    J Biol Chem; 1981 Jan; 256(2):785-92. PubMed ID: 6778875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the reaction of papain and succinylpapin with diazo-1-H-tetrazole.
    Löffler HG; Schneider FR
    Biochim Biophys Acta; 1975 Mar; 386(1):221-32. PubMed ID: 236020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical modification of lysine and tryptophan residues from glutamate dehydrogenase using 2,4-pentanedione and 2,3-dioxo-5-indoline sulphonic acid.
    Patil VW
    Indian J Biochem Biophys; 1984 Aug; 21(4):251-4. PubMed ID: 6441772
    [No Abstract]   [Full Text] [Related]  

  • 15. Modification of essential arginine residues of pigeon liver malic enzyme.
    Chang GG; Huang TM
    Biochim Biophys Acta; 1981 Aug; 660(2):341-7. PubMed ID: 7284407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of arginine, lysine, and guanidine with surface residues of lysozyme: implication to protein stability.
    Shah D; Shaikh AR
    J Biomol Struct Dyn; 2016; 34(1):104-14. PubMed ID: 25730443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for an essential lysyl residue in phospholipase D from Streptomyces sp. by modification with diethyl pyrocarbonate and pyridoxal 5-phosphate.
    Secundo F; Carrea G; D'Arrigo P; Servi S
    Biochemistry; 1996 Jul; 35(30):9631-6. PubMed ID: 8703934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-sweetness relationship in egg white lysozyme: role of lysine and arginine residues on the elicitation of lysozyme sweetness.
    Masuda T; Ide N; Kitabatake N
    Chem Senses; 2005 Oct; 30(8):667-81. PubMed ID: 16162643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible modification of arginine residues. Application to sequence studies by restriction of tryptic hydrolysis to lysine residues.
    Patthy L; Smith EL
    J Biol Chem; 1975 Jan; 250(2):557-64. PubMed ID: 234432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L-arginine binding to liver arginase requires proton transfer to gateway residue His141 and coordination of the guanidinium group to the dimanganese(II,II) center.
    Khangulov SV; Sossong TM; Ash DE; Dismukes GC
    Biochemistry; 1998 Jun; 37(23):8539-50. PubMed ID: 9622506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.