These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 430122)

  • 1. Voltage sensitivity of small, focal transient potassium depolarizations in snail neurons: relevance for diagnosis of chemical synaptic activity.
    Rudomin P; Stefani E; Werman R
    J Neurophysiol; 1979 May; 42(3):912-24. PubMed ID: 430122
    [No Abstract]   [Full Text] [Related]  

  • 2. [Excitatory and inhibitory monosynaptic peptidergic transmissions in the CNS of the edible snail Helix pomatia].
    Kononenko NI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1993; 43(1):121-8. PubMed ID: 8385384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The ultrastructure of the central nervous system neurons and synapses in the edible snail under a high concentration of potassium ions].
    Burakov SV; Nikonov EA
    Biull Eksp Biol Med; 1992 Jul; 114(8):117-20. PubMed ID: 1467466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The monosynaptic connections in the central nervous system of the edible snail: the receptive fields of the presynaptic neurons].
    Palikhova TA; Arakelov GG
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1990; 40(6):1186-9. PubMed ID: 1965265
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of atropine and d-tubocurarine on the monosynaptic connections between identified neurons in the central nervous system of the edible snail.
    Ter-Markaryan AG; Palikhova TA; Sokolov EN
    Neurosci Behav Physiol; 1991; 21(1):37-8. PubMed ID: 1648181
    [No Abstract]   [Full Text] [Related]  

  • 6. Monosynaptic connections between histamine-containing neurons and their various follower cells.
    McCaman RE; McKenna DG
    Brain Res; 1978 Feb; 141(1):165-71. PubMed ID: 624072
    [No Abstract]   [Full Text] [Related]  

  • 7. Organizational and cellular mechanisms underlying chemical inhibition of a vertebrate neuron.
    Korn H; Faber DS
    Prog Brain Res; 1983; 58():165-74. PubMed ID: 6314430
    [No Abstract]   [Full Text] [Related]  

  • 8. Actions of Zn2+ on spontaneous, stimulus and transmitter evoked events in Helix neurons.
    Kovács T; Erdélyi L
    Acta Biol Hung; 1995; 46(2-4):427-30. PubMed ID: 8853714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Direct action of angiotensin II on the central neurons].
    Sudakov KV; Sherstnev VV; Osipovskiĭ SA
    Biull Eksp Biol Med; 1976 Aug; 82(8):899-902. PubMed ID: 1026279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pre- and postsynaptic effects of eugenol and related compounds on Helix pomatia L. neurons.
    Szabadics J; Erdélyi L
    Acta Biol Hung; 2000; 51(2-4):265-73. PubMed ID: 11034151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bensultap decreases neuronal excitability in molluscan and mammalian central nervous system.
    Györi J; Varró P; Zielinska E; Banczerowski-Pelyhe I; Világi I
    Toxicol In Vitro; 2007 Sep; 21(6):1050-7. PubMed ID: 17507197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiology and ionic movements in the central nervous system of the snail, Helix aspersa.
    Moreton RB
    J Exp Biol; 1972 Oct; 57(2):513-41. PubMed ID: 4634497
    [No Abstract]   [Full Text] [Related]  

  • 13. Monosynaptic connections between LPa7-LPa3 and LPa9-LPa3 neurons in the central nervous system of helix pomatia. Electrophysiological characteristics, monosynaptic plasticity, neurotransmission.
    Ter-Margarian AG
    Acta Physiol Pharmacol Bulg; 1990; 16(3):22-7. PubMed ID: 1966258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epileptic neurons induce augmenting synaptic depolarizations in non-epileptic neurons (buccal ganglia, Helix pomatia).
    Wiemann M; Altrup U; Speckmann EJ
    Neurosci Lett; 1997 Nov; 237(2-3):101-4. PubMed ID: 9453225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monosynaptic connections in the central nervous system of the edible snail: receptive fields of presynaptic neurons.
    Palikhova TA; Arakelov GG
    Neurosci Behav Physiol; 1992; 22(1):14-6. PubMed ID: 1614612
    [No Abstract]   [Full Text] [Related]  

  • 16. [The monosynaptic connection: identified synapses in the CNS of the edible snail].
    Arakelov GG; Marakueva IV; Palikhova TA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1989; 39(4):737-45. PubMed ID: 2479192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic adenosine monophosphate (cAMP)-induced potentiation of synaptic responses in Helix neurons.
    Borisova OV
    Cell Mol Neurobiol; 1990 Jun; 10(2):275-9. PubMed ID: 2163756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Action of piribedil on synaptic transmission in the cockroach central nervous system (Periplaneta americana L.) (author's transl)].
    Hue B; Pelhate M; Chanelet J
    J Pharmacol; 1981; 12(4):455-63. PubMed ID: 7321574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potassium channels in the central nervous system of the snail, Helix pomatia: localization and functional characterization.
    Battonyai I; Krajcs N; Serfőző Z; Kiss T; Elekes K
    Neuroscience; 2014 May; 268():87-101. PubMed ID: 24631713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic inputs on a bimodal pacemaker neuron in Helix pomatia L.
    Salánki J; Vehovszky A
    Acta Physiol Acad Sci Hung; 1981; 57(4):355-64. PubMed ID: 7331823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.