These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
39 related articles for article (PubMed ID: 4302229)
1. The relationship between the pH-induced spectral change in ferriprotoheme and the substrate-induced spectral change of the hepatic microsomal mixed-function oxidase. Schenkman JB; Sato R Mol Pharmacol; 1968 Nov; 4(6):613-20. PubMed ID: 4302229 [No Abstract] [Full Text] [Related]
2. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase. Okuno D; Iwase T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T J Am Chem Soc; 2003 Jun; 125(24):7209-18. PubMed ID: 12797794 [TBL] [Abstract][Full Text] [Related]
3. Light-induced spectral changes in fully oxidized cytochrome c oxidase in the presence of oxygen. Brooks JL; Sucheta A; Einarsdóttir O Biochemistry; 1997 May; 36(21):6336-42. PubMed ID: 9174348 [TBL] [Abstract][Full Text] [Related]
4. A pH-dependent polarity change at the binuclear center of reduced cytochrome c oxidase detected by FTIR difference spectroscopy of the CO adduct. Mitchell DM; Shapleigh JP; Archer AM; Alben JO; Gennis RB Biochemistry; 1996 Jul; 35(29):9446-50. PubMed ID: 8755723 [TBL] [Abstract][Full Text] [Related]
5. A comparative study of the hepatic and pulmonary microsomal mixed-function oxidase systems in the rabbit. Bend JR; Hook GE; Easterling RE; Gram TE; Fouts JR J Pharmacol Exp Ther; 1972 Oct; 183(1):206-17. PubMed ID: 4404113 [No Abstract] [Full Text] [Related]
6. Proton interactions with hemes a and a3 in bovine heart cytochrome c oxidase. Parul D; Palmer G; Fabian M Biochemistry; 2005 Mar; 44(11):4562-71. PubMed ID: 15766287 [TBL] [Abstract][Full Text] [Related]
7. Enzymatic and spectral analysis of cytochrome oxidase in adult and fetal rat liver and Morris hepatoma 3924A. Schreiber JR; Balcavage WX; Morris HP; Pedersen PL Cancer Res; 1970 Oct; 30(10):2497-501. PubMed ID: 4319759 [No Abstract] [Full Text] [Related]
8. Proton and electron transfer during the reduction of molecular oxygen by fully reduced cytochrome c oxidase: a flow-flash investigation using optical multichannel detection. Paula S; Sucheta A; Szundi I; Einarsdóttir O Biochemistry; 1999 Mar; 38(10):3025-33. PubMed ID: 10074355 [TBL] [Abstract][Full Text] [Related]
9. Studies on cytochrome oxidase. V. Factors affecting the optical rotatory dispersion of hematin a. Yong FC; King TE J Biol Chem; 1969 Feb; 244(4):515-21. PubMed ID: 4305877 [No Abstract] [Full Text] [Related]
10. Purification and characterization of benzoate-para-hydroxylase, a cytochrome P450 (CYP53A1), from Aspergillus niger. Faber BW; van Gorcom RF; Duine JA Arch Biochem Biophys; 2001 Oct; 394(2):245-54. PubMed ID: 11594739 [TBL] [Abstract][Full Text] [Related]
11. Photoreactivation of the cytochrome oxidase complex with cyanide: the reaction of heme a3 photoreduction. Konev SV; Beljanovich LM; Rudenok AN Membr Cell Biol; 1998; 12(5):743-54. PubMed ID: 10379650 [TBL] [Abstract][Full Text] [Related]
12. Factors affecting the H+/e- stoichiometry in mitochondrial cytochrome c oxidase: influence of the rate of electron flow and transmembrane delta pH. Capitanio N; Capitanio G; Demarinis DA; De Nitto E; Massari S; Papa S Biochemistry; 1996 Aug; 35(33):10800-6. PubMed ID: 8718871 [TBL] [Abstract][Full Text] [Related]
13. Polar residues in helix VIII of subunit I of cytochrome c oxidase influence the activity and the structure of the active site. Hosler JP; Shapleigh JP; Mitchell DM; Kim Y; Pressler MA; Georgiou C; Babcock GT; Alben JO; Ferguson-Miller S; Gennis RB Biochemistry; 1996 Aug; 35(33):10776-83. PubMed ID: 8718868 [TBL] [Abstract][Full Text] [Related]
14. [Cytochrome oxidase, structure and function]. Laskowska-Klita T Postepy Biochem; 1973; 19(2):261-78. PubMed ID: 4352280 [No Abstract] [Full Text] [Related]
15. [Redox-dependent protonation of cytochrome oxidase hemes in submitochondrial particles of the bovine heart]. Artsatbanov VIu; Grigor'ev VA; Konstantinov AA Biokhimiia; 1983 Jan; 48(1):46-53. PubMed ID: 6299407 [TBL] [Abstract][Full Text] [Related]
16. Effect of substrates on hepatic microsomal cytochrome P-450. Schenkman JB Hoppe Seylers Z Physiol Chem; 1968 Nov; 349(11):1624-8. PubMed ID: 5745915 [No Abstract] [Full Text] [Related]
17. Biochemistry of the peroxisome in the liver cell. Sies H Angew Chem Int Ed Engl; 1974 Nov; 13(11):706-18. PubMed ID: 4375415 [No Abstract] [Full Text] [Related]
18. Redox state of peroxy and ferryl intermediates in cytochrome c oxidase catalysis. Fabian M; Palmer G Biochemistry; 1999 May; 38(19):6270-5. PubMed ID: 10320356 [TBL] [Abstract][Full Text] [Related]
19. Spectral properties of the oxyferrous complex of the heme domain of cytochrome P450 BM-3 (CYP102). Bec N; Anzenbacher P; Anzenbacherová E; Gorren AC; Munro AW; Lange R Biochem Biophys Res Commun; 1999 Dec; 266(1):187-9. PubMed ID: 10581187 [TBL] [Abstract][Full Text] [Related]
20. Photoreactions of cytochrome C oxidase. Winterle JS; Einarsdóttir O Photochem Photobiol; 2006; 82(3):711-9. PubMed ID: 16789843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]