These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 4302300)

  • 21. Inactivation of Clostridium perfringens spores adhered onto stainless steel surface by agents used in a clean-in-place procedure.
    Alzubeidi YS; Udompijitkul P; Talukdar PK; Sarker MR
    Int J Food Microbiol; 2018 Jul; 277():26-33. PubMed ID: 29680693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inactivation of Clostridium perfringens type A spores at ultrahigh temperatures.
    Adams DM
    Appl Microbiol; 1973 Sep; 26(3):282-7. PubMed ID: 4356457
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High yields of coatless spores of Clostridium perfringens strain 8--6 in a defined medium.
    Sacks LE; Thomas RS
    Can J Microbiol; 1979 May; 25(5):642-5. PubMed ID: 224996
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growth from spores of Clostridium perfringens in the presence of sodium nitrite.
    Labbe RG; Duncan CL
    Appl Microbiol; 1970 Feb; 19(2):353-9. PubMed ID: 4314380
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sporulation, heat resistance, and biological properties of Clostridium perfringens.
    Nishida S; Seo N; Nakagawa M
    Appl Microbiol; 1969 Feb; 17(2):303-9. PubMed ID: 4304763
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Sporulation medium for Clostridium perfringens].
    Tahon-Cstel BH; Baron G
    Ann Inst Pasteur Lille; 1969; 20():163-5. PubMed ID: 4323256
    [No Abstract]   [Full Text] [Related]  

  • 27. Structural changes in cells of Clostridium perfringens infected with a short-tailed bacteriophage.
    Bradley DE; Hoeniger JF
    Can J Microbiol; 1971 Mar; 17(3):397-402. PubMed ID: 4323917
    [No Abstract]   [Full Text] [Related]  

  • 28. Ultrastructure Variability of the Exosporium Layer of Clostridium difficile Spores from Sporulating Cultures and Biofilms.
    Pizarro-Guajardo M; Calderón-Romero P; Paredes-Sabja D
    Appl Environ Microbiol; 2016 Oct; 82(19):5892-8. PubMed ID: 27474709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural Characterization of
    Rabi R; Turnbull L; Whitchurch CB; Awad M; Lyras D
    mSphere; 2017; 2(5):. PubMed ID: 28989969
    [No Abstract]   [Full Text] [Related]  

  • 30. Interference-contrast and phase-contrast microscopy of sporulation in clostridium thermosaccharolyticum grown under strict anaerobiosis.
    Eller C; Ordal ZJ
    J Bacteriol; 1972 Sep; 111(3):674-81. PubMed ID: 4559820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Near-infrared spectroscopy coupled with chemometrics algorithms for the quantitative determination of the germinability of Clostridium perfringens in four different matrices.
    Zhu Y; Zhang J; Li M; Ren H; Zhu C; Yan L; Zhao G; Zhang Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 May; 232():117997. PubMed ID: 32062401
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Comparative investigations on the suitability of Ellner- and Ducan-Strong medium for sporulation of the 6 types of Clostridium welchii (Cl. perfringens)].
    Hartwigk H; Schick HD; Plettner B
    Zentralbl Bakteriol Orig; 1970 Apr; 213(3):382-8. PubMed ID: 4318513
    [No Abstract]   [Full Text] [Related]  

  • 33. Structural changes associated with extraction of group E spore antigen of Clostridium botulinum.
    Hawirko RZ; Chung KL; Magnusson AJ; Emeruwa AC
    J Bacteriol; 1972 Dec; 112(3):1416-9. PubMed ID: 4565544
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An ultrastructural comparison of spores from various strains of Clostridium perfringens and correlations with heat resistance parameters.
    Novak JS; Juneja VK; McClane BA
    Int J Food Microbiol; 2003 Sep; 86(3):239-47. PubMed ID: 12915035
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sporulation of Clostridium botulinum types A, B, and E, Clostridium perfringens, and putrefactive anaerobe 3679 in dialysis sacs.
    SCHNEIDER MD; GRECZ N; ANELLIS A
    J Bacteriol; 1963 Jan; 85(1):126-33. PubMed ID: 13992169
    [TBL] [Abstract][Full Text] [Related]  

  • 36. KINETICS OF DRY RUPTURE OF BACTERIAL SPORES IN THE PRESENCE OF SALT.
    SACKS LE; PERCELL PB; THOMAS RS; BAILEY GF
    J Bacteriol; 1964 Apr; 87(4):952-60. PubMed ID: 14137636
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new growth and in vitro sporulation medium for Clostridium perfringens.
    Meyer M; Tholozan JL
    Lett Appl Microbiol; 1999 Feb; 28(2):98-102. PubMed ID: 10063637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New amino acid germinants for spores of the enterotoxigenic Clostridium perfringens type A isolates.
    Udompijitkul P; Alnoman M; Banawas S; Paredes-Sabja D; Sarker MR
    Food Microbiol; 2014 Dec; 44():24-33. PubMed ID: 25084641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chitosan inhibits enterotoxigenic Clostridium perfringens type A in growth medium and chicken meat.
    Alnoman M; Udompijitkul P; Sarker MR
    Food Microbiol; 2017 Jun; 64():15-22. PubMed ID: 28213020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Appendage development in Clostridium bifermentans.
    Samsonoff WA; Hashimoto T; Conti SF
    J Bacteriol; 1971 Apr; 106(1):269-75. PubMed ID: 4101518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.