These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 4302445)

  • 1. Respiratory control in submitochondrial particles obtained by sonication.
    Vallin I
    Biochim Biophys Acta; 1968 Nov; 162(4):477-86. PubMed ID: 4302445
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies of the energy-transfer system of submitochondrial particles. Kinetic studies of the effect of oligomycin on the respiratory chain of EDTA particles.
    Lee CP; Ernster L; Chance B
    Eur J Biochem; 1969 Mar; 8(2):153-63. PubMed ID: 4305534
    [No Abstract]   [Full Text] [Related]  

  • 3. Apparent respiratory control in uncoupled mitochondria.
    Fritz IB; Beyer RE
    J Biol Chem; 1969 Jun; 244(11):3075-83. PubMed ID: 5772473
    [No Abstract]   [Full Text] [Related]  

  • 4. Interaction between NADH and succinate during simultaneous oxidation by non-phosphorylating submitochondrial particles from bovine heart.
    Davis EJ; Blair PV; Mahoney AJ
    Biochim Biophys Acta; 1969 Apr; 172(3):574-7. PubMed ID: 4305700
    [No Abstract]   [Full Text] [Related]  

  • 5. Reconstitution of respiratory control of succinate oxidation in submitochondrial particles.
    Lee C; Johansson B; King TE
    Biochem Biophys Res Commun; 1969 Apr; 35(2):243-8. PubMed ID: 4306326
    [No Abstract]   [Full Text] [Related]  

  • 6. Constraints on the mechanism of reduction of molecular oxygen by cytochrome oxidase under coupled conditions.
    Wrigglesworth JM; Baum H; Nichols P
    FEBS Lett; 1973 Sep; 35(1):106-8. PubMed ID: 4356491
    [No Abstract]   [Full Text] [Related]  

  • 7. Inhibition of oxidative phosphorylation by hydroxylamine in sonicated particles from beef-heart mitochondria.
    Wikström MK
    Biochim Biophys Acta; 1971 Apr; 234(1):16-27. PubMed ID: 4327077
    [No Abstract]   [Full Text] [Related]  

  • 8. Studies on oxidative phosphorylation. XVI. Sulfhydryl involvement in the energy-transfer pathway.
    Kurup CK; Sanadi DR
    Biochemistry; 1968 Dec; 7(12):4483-91. PubMed ID: 4302625
    [No Abstract]   [Full Text] [Related]  

  • 9. Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles.
    Grinius LL; Jasaitis AA; Kadziauskas YP; Liberman EA; Skulachev VP; Topali VP; Tsofina LM; Vladimirova MA
    Biochim Biophys Acta; 1970 Aug; 216(1):1-12. PubMed ID: 4395700
    [No Abstract]   [Full Text] [Related]  

  • 10. Respiratory control in submitochondrial particles and Ca++ transport.
    Loyter A; Christiansen RO; Racker E
    Biochem Biophys Res Commun; 1967 Nov; 29(3):450-6. PubMed ID: 6076247
    [No Abstract]   [Full Text] [Related]  

  • 11. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXI. Resolution of submitochondrial particles from bovine heart mitochondria with silicotungstate.
    Racker E; Horstman LL; Kling D; Fessenden-Raden JM
    J Biol Chem; 1969 Dec; 244(24):6668-74. PubMed ID: 4311918
    [No Abstract]   [Full Text] [Related]  

  • 12. Inhibition of respiration in submitochondrial particles by uncouplers of oxidative phosphorylation.
    Beyer RE; MacDonald JE
    Arch Biochem Biophys; 1970 Mar; 137(1):38-50. PubMed ID: 4314056
    [No Abstract]   [Full Text] [Related]  

  • 13. Inhibition of mitochondrial oxidation and uncoupling of phosphorylation by antispermatogenic bis-dichloroacetamides.
    Merola AJ; Brierley GP
    Biochem Pharmacol; 1970 Apr; 19(4):1429-42. PubMed ID: 4327764
    [No Abstract]   [Full Text] [Related]  

  • 14. Studies with ubiquinone-depleted submitochondrial particles. Essentiality of ubiquinone for the interaction of succinate dehydrogenase, NADH dehydrogenase, and cytochrome b.
    Ernster L; Lee IY; Norling B; Persson B
    Eur J Biochem; 1969 Jun; 9(3):299-310. PubMed ID: 4307591
    [No Abstract]   [Full Text] [Related]  

  • 15. The effect of piericidin A on energy-linked processes in submitochondrial particles.
    Vallin I; Löw H
    Eur J Biochem; 1968 Aug; 5(3):402-8. PubMed ID: 4300601
    [No Abstract]   [Full Text] [Related]  

  • 16. Menadiol as an electron donor for reversed oxidative phosphorylation in submitochondrial particles.
    Taggart WV; Sanadi DR
    Biochim Biophys Acta; 1972 Jun; 267(3):439-43. PubMed ID: 4340058
    [No Abstract]   [Full Text] [Related]  

  • 17. Energy-linked ion translocation in submitochondrial particles. I. Ca++ accumulation in submitochondrial particles.
    Loyter A; Christiansen RO; Steensland H; Saltzgaber J; Racker E
    J Biol Chem; 1969 Aug; 244(16):4422-7. PubMed ID: 4308860
    [No Abstract]   [Full Text] [Related]  

  • 18. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XX. Characterization of ASU-particles.
    Fessenden-Raden JM
    J Biol Chem; 1969 Dec; 244(24):6662-7. PubMed ID: 4311917
    [No Abstract]   [Full Text] [Related]  

  • 19. Evidence for the occurrence in submitochondrial particles of a dual respiratory chain containing different forms of cytochrome b.
    Norling B; Nelson BD; Nordenbrand K; Ernster L
    Biochim Biophys Acta; 1972 Jul; 275(1):18-32. PubMed ID: 4340268
    [No Abstract]   [Full Text] [Related]  

  • 20. Ion transport by heart mitochondria. 23. The effects of lead on mitochondrial reactions.
    Scott KM; Hwang KM; Jurkowitz M; Brierley GP
    Arch Biochem Biophys; 1971 Dec; 147(2):557-67. PubMed ID: 4332722
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.