BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 4304212)

  • 1. Beta-aspartylhydroxamic acid: its action as a feedback inhibitor and a repressor of asparagine synthetase in Lactobacillus arabinosus.
    Norton SJ; Chen YT
    Arch Biochem Biophys; 1969 Feb; 129(2):560-6. PubMed ID: 4304212
    [No Abstract]   [Full Text] [Related]  

  • 2. Control of glutamine synthesis in Lactobacillus arabinosus.
    Ravel JM; Humphreys JS; Shive W
    Arch Biochem Biophys; 1965 Sep; 111(3):720-6. PubMed ID: 5862218
    [No Abstract]   [Full Text] [Related]  

  • 3. Mechanism of action of amino acid transfer ribonucleic acid ligases.
    Loftfield RB; Eigner EA
    J Biol Chem; 1969 Apr; 244(7):1746-54. PubMed ID: 4305463
    [No Abstract]   [Full Text] [Related]  

  • 4. D-Alanine: membrane acceptor ligase from Lactobacillus casei.
    Reusch VM; Neuhaus FC
    J Biol Chem; 1971 Oct; 246(20):6136-43. PubMed ID: 4399593
    [No Abstract]   [Full Text] [Related]  

  • 5. Continuous pH stat assay technique for glutamine and asparagine synthetase enzyme systems, involving ATP conversion to ADP plus Pi and AMP plus PPi, respectively.
    Wedler FC; McClune G
    Anal Biochem; 1974 Jun; 59(2):347-53. PubMed ID: 4151971
    [No Abstract]   [Full Text] [Related]  

  • 6. Rat liver glutamyl ribonucleic acid synthetase. II. Further properties and anomalous pyrophosphate exchange.
    Deutscher MP
    J Biol Chem; 1967 Mar; 242(6):1132-9. PubMed ID: 4290313
    [No Abstract]   [Full Text] [Related]  

  • 7. L-O-Methylthreonine--synthesis and mode of action as an isoleucine antagonist.
    Smulson ME; Rabinovitz M
    Arch Biochem Biophys; 1968 Mar; 124(1):306-13. PubMed ID: 4298495
    [No Abstract]   [Full Text] [Related]  

  • 8. Replacement of Mg 2+ by monovalent cations in aminoacyl transfer RNA formation.
    Igarashi K; Yo M; Takeda Y
    Biochim Biophys Acta; 1971 May; 238(2):314-23. PubMed ID: 4328114
    [No Abstract]   [Full Text] [Related]  

  • 9. Pyruvate holocarboxylase formation from the apoenzyme and D-biotin in Saccharomyces cerevisiae.
    Sundaram TK; Cazzulo JJ; Kornberg HL
    Arch Biochem Biophys; 1971 Apr; 143(2):609-16. PubMed ID: 5558138
    [No Abstract]   [Full Text] [Related]  

  • 10. The properties of a glycyl-soluble-RNA synthetase from chick embryo.
    Bublitz C
    Biochim Biophys Acta; 1966 Jan; 113(1):158-66. PubMed ID: 4287345
    [No Abstract]   [Full Text] [Related]  

  • 11. Chloroquine and synthesis of aminoacyl transfer ribonucleic acids. Tryptophanyl transfer ribonucleic acid synthetase of Escherichia coli and tryptophanyladenosine triphosphate formation.
    Muench KH
    Biochemistry; 1969 Dec; 8(12):4872-9. PubMed ID: 4312458
    [No Abstract]   [Full Text] [Related]  

  • 12. [Dissociation of 2 enzymatic activities from isoleucyl-ribonucleic acid synthetase of "Bacillus stearothermophilus"].
    Charlier J; Grosjean H
    Arch Int Physiol Biochim; 1966 Nov; 74(5):914-5. PubMed ID: 4165990
    [No Abstract]   [Full Text] [Related]  

  • 13. Isoleucyl transfer ribonucleic acid synthetase. The role of magnesium in amino acid activation.
    Cole FX; Schimmel PR
    Biochemistry; 1970 Aug; 9(16):3143-8. PubMed ID: 4321368
    [No Abstract]   [Full Text] [Related]  

  • 14. DEMONSTRATION OF AN ALTERED AMINOACYL RIBONUCLEIC ACID SYNTHETASE IN A MUTANT OF ESCHERICHIA COLI.
    FANGMAN WL; NEIDHARDT FC
    J Biol Chem; 1964 Jun; 239():1839-43. PubMed ID: 14213362
    [No Abstract]   [Full Text] [Related]  

  • 15. Activation of D-aspartic acid for incorporation into peptidoglycan.
    Staudenbauer W; Strominger JL
    J Biol Chem; 1972 Aug; 247(16):5095-102. PubMed ID: 4262567
    [No Abstract]   [Full Text] [Related]  

  • 16. Hydroxylamine-dependent reactions catalyzed by a lysyl-tRNA synthetase of Escherichia coli B.
    Hele P
    Biochim Biophys Acta; 1973 Jan; 294(2):273-83. PubMed ID: 4348067
    [No Abstract]   [Full Text] [Related]  

  • 17. Studies on lysyl transfer ribonucleic acid synthetase from Escherichia coli.
    Stern R; Peterkofsky A
    Biochemistry; 1969 Nov; 8(11):4346-54. PubMed ID: 4311030
    [No Abstract]   [Full Text] [Related]  

  • 18. Aminomalonic acid and its congeners as potential in vivo inhibitors of L-asparagine synthetase.
    Milman HA; Muth R; Cooney DA
    Enzyme; 1979; 24(1):36-47. PubMed ID: 35346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The site of the inhibitory action of salicylate on protein biosynthesis in vitro.
    Burleigh M; Smith MJ
    J Pharm Pharmacol; 1971 Jul; 23(7):519-27. PubMed ID: 4397452
    [No Abstract]   [Full Text] [Related]  

  • 20. Coenzyme repression of acetyl-CoA carboxylase by (+)-biotin.
    Birnbaum J
    Arch Biochem Biophys; 1969 Jul; 132(2):436-41. PubMed ID: 5797332
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.