These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 4304226)

  • 1. Mammalian metabolism of glutaric acid.
    Besrat A; Polan CE; Henderson LM
    J Biol Chem; 1969 Mar; 244(6):1461-7. PubMed ID: 4304226
    [No Abstract]   [Full Text] [Related]  

  • 2. COFACTOR REQUIREMENTS FOR THE FORMATION OF DELTA-9-UNSATURATED FATTY ACIDS IN MYCOBACTERIUM PHLEI.
    FULCO AJ; BLOCH K
    J Biol Chem; 1964 Apr; 239():993-7. PubMed ID: 14167617
    [No Abstract]   [Full Text] [Related]  

  • 3. The inhibition of mitochondrial respiration by beta-benzal butyric acid and the possible relationship to cholesterol biosynthesis.
    Speranza ML; Gaiti A; De Medio GE; Montanini I; Porcellati G
    Biochem Pharmacol; 1970 Oct; 19(10):2737-43. PubMed ID: 4320224
    [No Abstract]   [Full Text] [Related]  

  • 4. THE ACTIVATION AND METABOLISM OF BETA-HYDROXY-BETA-METHYLGLUTARIC ACID.
    BURCH RE; RUDNEY H; IRIAS JJ
    J Biol Chem; 1964 Dec; 239():4111-6. PubMed ID: 14247656
    [No Abstract]   [Full Text] [Related]  

  • 5. The regulation of nicotinamide adenine dinucleotide-linked substrate oxidation in isolated liver mitochondria.
    Olson MS; Allgyer TT
    J Biol Chem; 1973 Mar; 248(5):1582-9. PubMed ID: 4348544
    [No Abstract]   [Full Text] [Related]  

  • 6. Rate control of the tricarboxylic acid cycle.
    Krebs HA
    Adv Enzyme Regul; 1970; 8():335-53. PubMed ID: 4920378
    [No Abstract]   [Full Text] [Related]  

  • 7. Intermediates in fatty acid oxidation.
    Stewart HB; Tubbs PK; Stanley KK
    Biochem J; 1973 Jan; 132(1):61-76. PubMed ID: 4722901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavoproteins of mitochondrial fatty acid oxidation.
    Garland PB; Chance B; Ernster L; Lee CP; Wong D
    Proc Natl Acad Sci U S A; 1967 Oct; 58(4):1696-702. PubMed ID: 4295832
    [No Abstract]   [Full Text] [Related]  

  • 9. [Evidence for the mechanism of action of sodium ethacrynate on rat liver mitochondria].
    Foucher B; Geyssant A; Goldschmidt D; Gaudemer Y
    Eur J Biochem; 1969 May; 9(1):63-9. PubMed ID: 4306665
    [No Abstract]   [Full Text] [Related]  

  • 10. [Enzymic mechanism of microbiological dehydration and reduction of the steroid A ring].
    Lestrovaia NN; Bukhar MI; Skriabin GK
    Biokhimiia; 1967; 32(4):741-5. PubMed ID: 4385660
    [No Abstract]   [Full Text] [Related]  

  • 11. In vitro synthesis of lignoceric and nervonic acids in mammalian liver and brain.
    Boone SC; Wakil SJ
    Biochemistry; 1970 Mar; 9(6):1470-9. PubMed ID: 4392137
    [No Abstract]   [Full Text] [Related]  

  • 12. Comparative studies on succinate and terminal oxidase activity in microbial and mammalian electron-transport systems.
    Jurtshuk P; May AK; Pope LM; Aston PR
    Can J Microbiol; 1969 Jul; 15(7):797-807. PubMed ID: 5796123
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of styrene and other alkyl benzene derivatives on oxidation of FAD- and NAD-linked substrates in rat liver mitochondria.
    Mickiewicz W; Rzeczycki W
    Biochem Pharmacol; 1988 Dec; 37(23):4439-44. PubMed ID: 2904817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. STUDIES ON THE BIOSYNTHESIS OF NICOTINAMIDE ADENINE DINUCLEOTIDE. II. A ROLE OF PICOLINIC CARBOXYLASE IN THE BIOSYNTHESIS OF NICOTINAMIDE ADENINE DINUCLEOTIDE FROM TRYPTOPHAN IN MAMMALS.
    IKEDA M; TSUJI H; NAKAMURA S; ICHIYAMA A; NISHIZUKA Y; HAYAISHI O
    J Biol Chem; 1965 Mar; 240():1395-401. PubMed ID: 14284754
    [No Abstract]   [Full Text] [Related]  

  • 15. Hydrogen transfer into mitochondria in the metabolism of ethanol. I. Oxidation of extramitochondrial reduced nicotinamide-adenine dinucleotide by mitochondria.
    Hassinen I
    Ann Med Exp Biol Fenn; 1967; 45(1):35-45. PubMed ID: 4294130
    [No Abstract]   [Full Text] [Related]  

  • 16. A simple micro method for the direct determination of delta-amino (14C) levulinic acid production in murine spleen and liver homogenates.
    Ebert PS; Tschudy DP; Choudhry JN; Chirigos MA
    Biochim Biophys Acta; 1970 May; 208(2):236-50. PubMed ID: 4316096
    [No Abstract]   [Full Text] [Related]  

  • 17. Formation of acetoacetate from 3-hydroxy-3-methylglutarate by rat liver and isolation of a mitochondrial coenzyme A-transferase activity involved.
    Deana R; Meneghello R; Manzi L; Gregolin C
    Biochem J; 1974 Mar; 138(3):481-6. PubMed ID: 4429544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. STUDIES ON THE METABOLISM OF THE BENZENE RING OF TRYPTOPHAN IN MAMMALIAN TISSUES. I. ENZYMIC FORMATION OF GLUTARIC ACID FROM 3-HYDROXYANTHRANILIC ACID.
    NISHIZUKA Y; ICHIYAMA A; GHOLSON RK; HAYAISHI O
    J Biol Chem; 1965 Feb; 240():733-9. PubMed ID: 14275129
    [No Abstract]   [Full Text] [Related]  

  • 19. Enzymes of the conversion of succinate to glutamate in extracts of rumen microorganisms.
    Emmanuel B; Milligan LP
    Can J Biochem; 1972 Jan; 50(1):1-8. PubMed ID: 5059672
    [No Abstract]   [Full Text] [Related]  

  • 20. Alterations of liver metabolism associated with experimental acute pancreatitis.
    Kitamura O; Ozawa K; Honjo I
    Am J Surg; 1973 Sep; 126(3):379-82. PubMed ID: 4353976
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.