These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 4304574)

  • 1. Inhibition of respiration in submitochondrial particles by N,N'-dicyclohexylcarbodiimide: the effect of sodium, potassium, and antibiotics which alter membrane permeability.
    Beyer RE; Brinker KR; Crankshaw DL
    Can J Biochem; 1969 Feb; 47(2):117-24. PubMed ID: 4304574
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies of the energy-transfer system of submitochondrial particles. 2. Effects of oligomycin and aurovertin.
    Lee C; Ernster L
    Eur J Biochem; 1968 Feb; 3(4):391-400. PubMed ID: 4296030
    [No Abstract]   [Full Text] [Related]  

  • 3. Inhibition of mitochondrial energy-linked functions by arsenate. Evidence for a nonhydrolytic mode of inhibitor action.
    Mitchell RA; Chang BF; Huang CH; DeMaster EG
    Biochemistry; 1971 May; 10(11):2049-54. PubMed ID: 4327397
    [No Abstract]   [Full Text] [Related]  

  • 4. Menadiol as an electron donor for reversed oxidative phosphorylation in submitochondrial particles.
    Taggart WV; Sanadi DR
    Biochim Biophys Acta; 1972 Jun; 267(3):439-43. PubMed ID: 4340058
    [No Abstract]   [Full Text] [Related]  

  • 5. Uncoupling and charge transfer in submitochondrial particles.
    Montal M; Chance B; Lee CP
    Biochem Biophys Res Commun; 1969 Aug; 36(3):428-34. PubMed ID: 5822400
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of N,N'-dicyclohexylcarbodiimide and other carbodiimides on electron transfer catalyzed by submitochondrial particles.
    Beyer RE; Brink TW; Crankshaw DL; Kuner JM; Pasternak A
    Biochemistry; 1972 Mar; 11(6):961-9. PubMed ID: 4335291
    [No Abstract]   [Full Text] [Related]  

  • 7. Inhibition of respiration in submitochondrial particles by uncouplers of oxidative phosphorylation.
    Beyer RE; MacDonald JE
    Arch Biochem Biophys; 1970 Mar; 137(1):38-50. PubMed ID: 4314056
    [No Abstract]   [Full Text] [Related]  

  • 8. Partial resolution of the enzymes catalyzing oxidative phosphorylation. 23. Preservation of energy coupling in submitochondrial particles lacking cytochrome oxidase.
    Arion WJ; Racker E
    J Biol Chem; 1970 Oct; 245(20):5186-94. PubMed ID: 4319234
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of ion-transporting antibiotics on the energy-linked reactions of submitochondrial particles.
    Montal M; Chance B; Lee CP; Azzi A
    Biochem Biophys Res Commun; 1969 Jan; 34(1):104-10. PubMed ID: 5762450
    [No Abstract]   [Full Text] [Related]  

  • 10. Inhibition of oxidative phosphorylation by hydroxylamine in sonicated particles from beef-heart mitochondria.
    Wikström MK
    Biochim Biophys Acta; 1971 Apr; 234(1):16-27. PubMed ID: 4327077
    [No Abstract]   [Full Text] [Related]  

  • 11. A comparison of the effects of NN'-dicyclohexylcarbodi-imide, oligomycin A and aurovertin on enrgy-linked reactions in mitochondria and submitochondrial particles.
    Roberton AM; Holloway CT; Knight IG; Beechey RB
    Biochem J; 1968 Jul; 108(3):445-56. PubMed ID: 4299126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active transport of potassium ion in heart mitochondria.
    Safer B; Schwartz A
    Circ Res; 1967 Jul; 21(1):25-31. PubMed ID: 4291295
    [No Abstract]   [Full Text] [Related]  

  • 13. On the role of K+ on oxidative phosphorylation.
    Gómez-Puyou A; Sandoval F; Chávez E; Tuena M
    J Biol Chem; 1970 Oct; 245(20):5239-47. PubMed ID: 4319236
    [No Abstract]   [Full Text] [Related]  

  • 14. Respiration-driven proton transport in submitochondrial particles.
    Hinkle PC; Horstman LL
    J Biol Chem; 1971 Oct; 246(19):6024-8. PubMed ID: 4330063
    [No Abstract]   [Full Text] [Related]  

  • 15. Respiratory control and K+ transport in submitochondrial particles.
    Cockrell RS; Racker E
    Biochem Biophys Res Commun; 1969 May; 35(3):414-9. PubMed ID: 5788498
    [No Abstract]   [Full Text] [Related]  

  • 16. Control of mitochondrial respiration by the phosphate potential.
    Wilson DF; Owen C; Mela L; Weiner L
    Biochem Biophys Res Commun; 1973 Jul; 53(1):326-33. PubMed ID: 4741551
    [No Abstract]   [Full Text] [Related]  

  • 17. Energy-linked alteration of the permeability of heart mitochondria to chloride and other anions.
    Brierley GP
    Biochemistry; 1970 Feb; 9(4):697-707. PubMed ID: 5417390
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of monovalent cations on oxidative phosphorylation in submitochondrial particles.
    Papa S; Tager JM; Guerrieri F; Quagliariello E
    Biochim Biophys Acta; 1969 Jan; 172(1):184-6. PubMed ID: 5763419
    [No Abstract]   [Full Text] [Related]  

  • 19. Adenine nucleotide transport in submitochondrial particles and reconstituted vesicles derived from bovine heart mitochondria.
    Shertzer HG; Racker E
    J Biol Chem; 1974 Feb; 249(4):1320-1. PubMed ID: 4814345
    [No Abstract]   [Full Text] [Related]  

  • 20. Inhibition of mitochondrial oxidation and uncoupling of phosphorylation by antispermatogenic bis-dichloroacetamides.
    Merola AJ; Brierley GP
    Biochem Pharmacol; 1970 Apr; 19(4):1429-42. PubMed ID: 4327764
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.