These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 4304728)

  • 1. Activation Ca2+ uptake by acetyl phosphate in muscle microsomes.
    De Meis L
    Biochim Biophys Acta; 1969 Feb; 172(2):343-4. PubMed ID: 4304728
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparative data of Ca2+ transport in brain and skeletal muscle microsomes.
    de Meis L; Rubin-Altschul M; Machado RD
    J Biol Chem; 1970 Apr; 245(8):1883-9. PubMed ID: 4245465
    [No Abstract]   [Full Text] [Related]  

  • 3. Ca2+ uptake and acetyl phosphatase of skeletal muscle microsomes. Inhibition by Na+, K+, Li+, and adenosine triphosphate.
    De Meis L
    J Biol Chem; 1969 Jul; 244(14):3733-9. PubMed ID: 4308734
    [No Abstract]   [Full Text] [Related]  

  • 4. Adenosine triphosphate dependent calcium binding of microsomes and nerve endings.
    Yoshida H; Kadota K; Fujisawa H
    Nature; 1966 Oct; 212(5059):291-2. PubMed ID: 5970125
    [No Abstract]   [Full Text] [Related]  

  • 5. Adenosine triphosphate--dependent calcium uptake by rat submaxillary gland microsomes.
    Alonso GL; Bazerque PM; Arrigó DM; Tumilasci OR
    J Gen Physiol; 1971 Sep; 58(3):340-50. PubMed ID: 4255373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of ouabain and alpha angelica lactone on calcium metabolism of dog cardiac microsomes.
    Entman ML; Cook JW; Bressler R
    J Clin Invest; 1969 Feb; 48(2):229-34. PubMed ID: 4236805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenosine triophosphate-dependent calcium accumulation by brain microsomes.
    Robinson JD; Lust WD
    Arch Biochem Biophys; 1968 Apr; 125(1):286-94. PubMed ID: 4231235
    [No Abstract]   [Full Text] [Related]  

  • 8. Calcium transport by rabbit skeletal muscle microsomes ("fragmented sarcoplasmic reticulum").
    Katz AM; Repke DI
    Biochim Biophys Acta; 1973 Mar; 298(2):270-8. PubMed ID: 4719132
    [No Abstract]   [Full Text] [Related]  

  • 9. Sarocoplasmic reticulum. VI. Microsomal Ca2+ transport in genetic muscular dystrophy of mice.
    Martonosi A
    Proc Soc Exp Biol Med; 1968 Mar; 127(3):824-8. PubMed ID: 4297198
    [No Abstract]   [Full Text] [Related]  

  • 10. Effects of oligomycin on the (Na + + K + )-dependent adenosine triphosphatase.
    Robinson JD
    Mol Pharmacol; 1971 May; 7(3):238-46. PubMed ID: 4328421
    [No Abstract]   [Full Text] [Related]  

  • 11. Ouabain-dependent incorporation of 32P from p-nitrophenyl phosphate into a microsomal phosphatase.
    Inturrisi CE; Titus E
    Mol Pharmacol; 1970 Mar; 6(2):99-107. PubMed ID: 4313866
    [No Abstract]   [Full Text] [Related]  

  • 12. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. 3. Ca plus-uptake and ATP-splitting.
    Yamada S; Yamamoto T; Tonomura Y
    J Biochem; 1970 Jun; 67(6):789-94. PubMed ID: 4247349
    [No Abstract]   [Full Text] [Related]  

  • 13. ATP-dependent calcium accumulation in brain microsomes. Enhancement by phosphate and oxalate.
    Trotta EE; de Meis L
    Biochim Biophys Acta; 1975 Jun; 394(2):239-47. PubMed ID: 124599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation-dephosphorylation of cardiac microsomes: a possible mechanism for control of calcium uptake by cyclic AMP.
    La Raia PJ; Morkin E
    Recent Adv Stud Cardiac Struct Metab; 1974; 4():417-26. PubMed ID: 4377614
    [No Abstract]   [Full Text] [Related]  

  • 15. Oxalate dependence of calcium uptake kinetics of rabbit skeletal muscle microsomes (fragmented sarcoplasmic reticulum).
    Li HC; Katz AM; Repke DI; Failor A
    Biochim Biophys Acta; 1974 Nov; 367(3):385-9. PubMed ID: 4429684
    [No Abstract]   [Full Text] [Related]  

  • 16. Two improvements in the preparation of cardiac microsomes.
    Stam AC; Sole M; Locksley R; Weglicki WB; Sonnenblick EH
    Recent Adv Stud Cardiac Struct Metab; 1974; 4():409-16. PubMed ID: 4377613
    [No Abstract]   [Full Text] [Related]  

  • 17. Substitution of phosphate for oxalate in the study of calcium accumulation and release by cardiac microsomal fractions.
    Dunnett J; Nayler WG
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():213-8. PubMed ID: 801572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of ouabain on calcium in subcellular fractions of cardiac muscle.
    Chipperfield D; Nayler WG
    J Pharmacol Exp Ther; 1969 Dec; 170(2):311-7. PubMed ID: 5355983
    [No Abstract]   [Full Text] [Related]  

  • 19. Subcellular origin of the oxalate- or inorganic phosphate-stimulated Ca2+ transport by smooth muscle microsomes: revisitation of the old problem by a new approach using saponin.
    Kwan CY
    Biochim Biophys Acta; 1985 Sep; 819(1):148-52. PubMed ID: 2931116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some properties of fragmented frog sarcoplasmic reticulum with particular reference to its response to caffeine.
    Ogawa Y
    J Biochem; 1970 May; 67(5):667-83. PubMed ID: 4248153
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.