BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 4305083)

  • 1. Basic studies on the mechanism of action of vitamin D.
    Norman AW; Haussler MR; Adams TH; Myrtle JF; Roberts P; Hibberd KA
    Am J Clin Nutr; 1969 Apr; 22(4):396-411. PubMed ID: 4305083
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies on calciferol metabolism. IV. Subcellular localization of 1,25-dihydroxy-vitamin D 3 in intestinal mucosa and correlation with increased calcium transport.
    Tsai HC; Wong RG; Norman AW
    J Biol Chem; 1972 Sep; 247(17):5511-9. PubMed ID: 4341345
    [No Abstract]   [Full Text] [Related]  

  • 3. Vitamin D: new findings on its metabolism and its role in calcium nutrition.
    Lawson DE
    Proc Nutr Soc; 1971 May; 30(1):47-58. PubMed ID: 4326653
    [No Abstract]   [Full Text] [Related]  

  • 4. Metabolism and subcellular location of 25-hydroxycholecalciferol in intestinal mucosa.
    Cousins RJ; DeLuca HF; Chen T; Suda T; Tanaka Y
    Biochemistry; 1970 Mar; 9(6):1453-9. PubMed ID: 4313884
    [No Abstract]   [Full Text] [Related]  

  • 5. Subcellular location of vitamin D and its metabolites in intestinal mucosa after a 10-IU dose.
    Stohs SJ; DeLuca HF
    Biochemistry; 1967 Nov; 6(11):3338-49. PubMed ID: 6073024
    [No Abstract]   [Full Text] [Related]  

  • 6. 25-Hydroxycholecalciferol, the probable metabolically active form of vitamin D. Isolation, identification, and subcellular location.
    DeLuca HF
    Am J Clin Nutr; 1969 Apr; 22(4):412-24. PubMed ID: 4305084
    [No Abstract]   [Full Text] [Related]  

  • 7. Metabolism of 25-hydroxycholecalciferol and its inhibition by actinomycin D and cycloheximide.
    Gray RW; DeLuca HF
    Arch Biochem Biophys; 1971 Jul; 145(1):276-82. PubMed ID: 4330767
    [No Abstract]   [Full Text] [Related]  

  • 8. The induction of calcium binding protein biosynthesis in intestine by vitamin D3.
    Macgregor RR; Hamilton JW; Cohn DV
    Biochim Biophys Acta; 1970 Nov; 222(2):482-90. PubMed ID: 4321549
    [No Abstract]   [Full Text] [Related]  

  • 9. 1,25-dihydroxycholecalciferol: the metabolite of vitamin D responsible for increased intestinal calcium transport.
    Frolik CA; Deluca HF
    Arch Biochem Biophys; 1971 Nov; 147(1):143-7. PubMed ID: 4329860
    [No Abstract]   [Full Text] [Related]  

  • 10. The hormone-like action of 1,25-(OH)2-cholecalciferol (a metabolite of the fat-soluble vitamin D) in the intestine.
    Norman AW
    Vitam Horm; 1974; 32():325-84. PubMed ID: 4376297
    [No Abstract]   [Full Text] [Related]  

  • 11. Metaboism of 25-hydroxycholecalciferol in target and nontarget tissues.
    Cousins RJ; DeLuca HF; Gray RW
    Biochemistry; 1970 Sep; 9(19):3649-52. PubMed ID: 4323609
    [No Abstract]   [Full Text] [Related]  

  • 12. The role of the kidney and vitamin D metabolism in health and disease.
    Norman AW; Henry H
    Clin Orthop Relat Res; 1974; (98):258-87. PubMed ID: 4361481
    [No Abstract]   [Full Text] [Related]  

  • 13. New vitamin D metabolite localized in intestinal cell nuclei.
    Lawson DE; Wilson PW; Kodicek E
    Nature; 1969 Apr; 222(5189):171-2. PubMed ID: 4304926
    [No Abstract]   [Full Text] [Related]  

  • 14. Rachitogenic activity of dietary strontium. I. Inhibition of intestinal calcium absorption and 1,25-dihydroxycholecalciferol synthesis.
    Omdahl JL; DeLuca HF
    J Biol Chem; 1972 Sep; 247(17):5520-6. PubMed ID: 4341346
    [No Abstract]   [Full Text] [Related]  

  • 15. Studies on calciferol metabolism. VII. The effects of actinomycin D and cycloheximide on the metabolism, tissue and subcellular localization, and action of vitamin D3.
    Tsai HC; Midgett RJ; Norman AW
    Arch Biochem Biophys; 1973 Aug; 157(2):339-47. PubMed ID: 4354317
    [No Abstract]   [Full Text] [Related]  

  • 16. [New data on the metabolism and mechanism of action of vitamin D].
    Trufanov AV
    Vopr Med Khim; 1973; 19(6):563-7. PubMed ID: 4369630
    [No Abstract]   [Full Text] [Related]  

  • 17. Evidence for the biologically active form of cholecalciferol in the intestine.
    Myrtle JF; Haussler MR; Norman AW
    J Biol Chem; 1970 Mar; 245(5):1190-6. PubMed ID: 4313704
    [No Abstract]   [Full Text] [Related]  

  • 18. Calcium-binding protein and vitamin D metabolism in experimental protein malnutrition.
    Kalk WJ; Pimstone BL
    Br J Nutr; 1974 Nov; 32(3):569-78. PubMed ID: 4373027
    [No Abstract]   [Full Text] [Related]  

  • 19. Vitamin D metabolism in experimental uraemia: effects on intestinal transport 45 Ca and on formation of 1,25-dihydroxycholecalciferol in rat.
    Hill LF; Van den Berg CJ; Mawer EB
    Nat New Biol; 1971 Aug; 232(2):189-91. PubMed ID: 4328213
    [No Abstract]   [Full Text] [Related]  

  • 20. Vitamin D metabolism: the role of kidney tissue.
    Gray R; Boyle I; DeLuca HF
    Science; 1971 Jun; 172(3989):1232-4. PubMed ID: 4325104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.