These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 4305156)

  • 1. Studies on ultrastructural dislocations in mitochondria. II. On the dislocation induced by lyophilization and the mechanism of uncoupling.
    Jolly W; Harris RA; Asai J; Lenaz G; Green DE
    Arch Biochem Biophys; 1969 Mar; 130(1):191-211. PubMed ID: 4305156
    [No Abstract]   [Full Text] [Related]  

  • 2. Inhibition of oxidative phosphorylation by hydroxylamine in sonicated particles from beef-heart mitochondria.
    Wikström MK
    Biochim Biophys Acta; 1971 Apr; 234(1):16-27. PubMed ID: 4327077
    [No Abstract]   [Full Text] [Related]  

  • 3. The properties of dicyclohexylcarbodiimide as an inhibitor of oxidative phosphorylation.
    Beechey RB; Roberton AM; Holloway CT; Knight IG
    Biochemistry; 1967 Dec; 6(12):3867-79. PubMed ID: 4294775
    [No Abstract]   [Full Text] [Related]  

  • 4. Studies on the stabilization of an oxidative phosphorylation system. I. Resistance of a phosphorylating system of submitochondrial particles to trypsin, due to phosphorylation of ADP.
    Luzikov VN; Saks VA; Kupriyanov VV
    Biochim Biophys Acta; 1971 Nov; 253(1):46-57. PubMed ID: 4331272
    [No Abstract]   [Full Text] [Related]  

  • 5. Studies on ultrastructural dislocations in mitochondria. I. Reconstitution of oxidative phosphorylation in lyophilized mitochondria by sonic irradiation.
    Lenaz G; Jolly W; Green DE
    Arch Biochem Biophys; 1968 Jul; 126(1):67-74. PubMed ID: 4233582
    [No Abstract]   [Full Text] [Related]  

  • 6. Site of action of atractyloside in mitochondria. II. Inhibition of oxidative phosphorylation.
    Allmann DW; Harris RA; Green DE
    Arch Biochem Biophys; 1967 Dec; 122(3):766-82. PubMed ID: 4230398
    [No Abstract]   [Full Text] [Related]  

  • 7. Energy-driven Ca45 accumulation in submitochondrial particles.
    Loyter A; Saltzgaber J; Steensland H; Racker E
    Ann N Y Acad Sci; 1969 Oct; 147(19):846-8. PubMed ID: 5261239
    [No Abstract]   [Full Text] [Related]  

  • 8. The effect of adenosine diphosphate on mitochondrial acid-base changes induced by energy-linked accumulation of Ca++.
    Reynafarje B; Gear AR; Rossi CS; Lehninger AL
    J Biol Chem; 1967 Sep; 242(18):4078-82. PubMed ID: 6061700
    [No Abstract]   [Full Text] [Related]  

  • 9. Inhibition of respiration in submitochondrial particles by N,N'-dicyclohexylcarbodiimide: the effect of sodium, potassium, and antibiotics which alter membrane permeability.
    Beyer RE; Brinker KR; Crankshaw DL
    Can J Biochem; 1969 Feb; 47(2):117-24. PubMed ID: 4304574
    [No Abstract]   [Full Text] [Related]  

  • 10. Conformational basis of energy transformations in membrane systems. 3. Configurational changes in the mitochondrial inner membrane induced by changes in functional states.
    Green DE; Asai J; Harris RA; Penniston JT
    Arch Biochem Biophys; 1968 May; 125(2):684-705. PubMed ID: 5656816
    [No Abstract]   [Full Text] [Related]  

  • 11. Nucleoside diphosphokinase from beef heart mitochondria. Purification and properties.
    Colomb MG; Chéruy A; Vignais PV
    Biochemistry; 1969 May; 8(5):1926-39. PubMed ID: 5785215
    [No Abstract]   [Full Text] [Related]  

  • 12. Arsenate and phosphate as modifiers of adenosine triphosphate driven energy-linked reduction. Kinetic study of the effects of modifiers on inhibition by adenosine diphosphate.
    Huang CH; Mitchell RA
    Biochemistry; 1972 Jun; 11(12):2278-83. PubMed ID: 4337612
    [No Abstract]   [Full Text] [Related]  

  • 13. Ultrastructural studies of beef heart mitochondria. II. Adenine nucleotide induced modifications of mitochondrial morphology.
    Weber NE; Blair PV
    Biochem Biophys Res Commun; 1970 Nov; 41(4):821-9. PubMed ID: 5477221
    [No Abstract]   [Full Text] [Related]  

  • 14. Studies on the electron transfer system. LXIX. "Solubilization" of the mitochondrial inner membrane by sonic oscillation.
    Tzagoloff A; McConnell DG; MacLennan DH
    J Biol Chem; 1968 Aug; 243(15):4117-22. PubMed ID: 4233197
    [No Abstract]   [Full Text] [Related]  

  • 15. Esterification of adenosine monophosphate coupled with the respiration of heavy beef heart mitochondria.
    Ozawa T
    J Biochem; 1969 May; 65(5):679-91. PubMed ID: 5806963
    [No Abstract]   [Full Text] [Related]  

  • 16. [Reversible suppression of electron transfer between cytochromes B and C].
    Skulachev VP; Evtodienko IuV; Iasaĭtis AA; Gmirnova EG; Chistiakov VV
    Vopr Med Khim; 1966; 12(4):438-40. PubMed ID: 4299500
    [No Abstract]   [Full Text] [Related]  

  • 17. The adenine nucleotide translocator and the nucleotide specificity of oxidative phosphorylation.
    Souverijn JH; Weijers PJ; Groot GS; Kemp A
    Biochim Biophys Acta; 1970 Nov; 223(1):31-5. PubMed ID: 5484056
    [No Abstract]   [Full Text] [Related]  

  • 18. Interactions of reduced and oxidized triphosphopyridine nucleotides with the electron-transport system of bovine heart mitochondria.
    Hatefi Y; Hanstein WG
    Biochemistry; 1973 Aug; 12(18):3515-22. PubMed ID: 4147216
    [No Abstract]   [Full Text] [Related]  

  • 19. [Acid-soluble nucleotides of beef heart mitochondria].
    Mansurova SE; Kulaev IS; Kholodenko VP; Poliakov VIu; Chistiakov VV
    Biokhimiia; 1969; 34(4):800-5. PubMed ID: 4391112
    [No Abstract]   [Full Text] [Related]  

  • 20. Adenine nucleotide translocation in mitochondria. Quantitative evaluation of the correlation between the phosphorylation of endogenous and exogenous ADP in mitochondria.
    Heldt HW; Pfaff E
    Eur J Biochem; 1969 Oct; 10(3):494-500. PubMed ID: 5348075
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.