These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 4305160)
1. The copper catalyzed oxidation of cysteine to cystine. Cavallini D; De Marco C; Duprè S; Rotilio G Arch Biochem Biophys; 1969 Mar; 130(1):354-61. PubMed ID: 4305160 [No Abstract] [Full Text] [Related]
2. PHYSICAL AND CHEMICAL STUDIES ON CERULOPLASMIN. 3. A STABILIZING COPPER-COPPER INTERACTION IN CERULOPLASMIN. ISEN P; MORELL AG J Biol Chem; 1965 May; 240():1974-8. PubMed ID: 14299617 [No Abstract] [Full Text] [Related]
3. Copper-catalyzed oxidation of thiomalic acid. De Marco C; Duprè S; Crifò C; Rotilio G; Cavallini D Arch Biochem Biophys; 1971 Jun; 144(2):496-502. PubMed ID: 4328158 [No Abstract] [Full Text] [Related]
4. Electron spin resonance studies of free radicals in solution. 3. pH dependence of thiyl free radical of cysteine. Kertesz JC; Wolf MB; Wolf W; Chen LY J Pharm Sci; 1974 Jun; 63(6):880-3. PubMed ID: 4368667 [No Abstract] [Full Text] [Related]
5. Chemiluminescence elicitation from an O2 and-or HOOH complex of the riboflavin-copper(I)-chelate. Stone MO; Vorhaben JE; Steele RH Biochem Biophys Res Commun; 1969 Aug; 36(3):502-10. PubMed ID: 5822405 [No Abstract] [Full Text] [Related]
6. EPR study of Cu(II) complexes of tridentate amino acids. Rotilio G; Calabrese L Arch Biochem Biophys; 1971 Mar; 143(1):218-25. PubMed ID: 4327237 [No Abstract] [Full Text] [Related]
7. Cuproproteins: a model and system derived from tricyanoaminopropene (TRIAP) and copper. Harris J; Ritchie K Ann N Y Acad Sci; 1969 Jan; 153(3):706-21. PubMed ID: 4310117 [No Abstract] [Full Text] [Related]
8. PHYSICAL AND CHEMICAL STUDIES ON CERULOPLASMIN. II. MOLECULAR OXYGEN AND THE BLUE COLOR OF CERULOPLASMIN. MORELL AG; AISEN P; BLUMBERG WE; SCHEINBERG IH J Biol Chem; 1964 Apr; 239():1042-3. PubMed ID: 14165904 [No Abstract] [Full Text] [Related]
9. Disulfide inhibition of copper-catalyzed oxidation of ascorbic acid: spectrophotometric evidence for accumulation of a stable complex. Baker WL Arch Biochem Biophys; 1987 Feb; 252(2):451-7. PubMed ID: 3813546 [TBL] [Abstract][Full Text] [Related]
10. Oxidation of cysteine and homocysteine by bovine albumin. Gabaldon M Arch Biochem Biophys; 2004 Nov; 431(2):178-88. PubMed ID: 15488466 [TBL] [Abstract][Full Text] [Related]
11. Studies of the metal sites of copper proteins. IV. Stellacyanin: preparation of apoprotein and involvement of sulfhydryl and tryptophan in the copper chromophore. Morpurgo L; Finazzi-Agrò A; Rotilio G; Mondovì B Biochim Biophys Acta; 1972 Jul; 271(2):292-9. PubMed ID: 4340027 [No Abstract] [Full Text] [Related]
12. On the formation of the superoxide anion radical during the reaction of reduced iron-sulfur proteins with oxygen. Orme-Johnson WH; Beinert H Biochem Biophys Res Commun; 1969 Sep; 36(6):905-11. PubMed ID: 4310147 [No Abstract] [Full Text] [Related]
13. MAGNETIC RESONANCE AND SUSCEPTIBILITY STUDIES OF FRUCTOSE COMPLEXES WITH COPPER AND IRON. AASA R; MALMSTROEM B; SALTMAN P Biochim Biophys Acta; 1964 Sep; 88():430-7. PubMed ID: 14249850 [No Abstract] [Full Text] [Related]
14. Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. II. Cupric and ferric chelate catalyzed oxidation. Khan MM; Martell AE J Am Chem Soc; 1967 Dec; 89(26):7104-11. PubMed ID: 6064355 [No Abstract] [Full Text] [Related]
15. Effect of bathocuproine disulfonate, a copper chelator, on cyst(e)ine metabolism by freshly isolated rat hepatocytes. Coloso RM; Drake MR; Stipanuk MH Am J Physiol; 1990 Sep; 259(3 Pt 1):E443-50. PubMed ID: 2399977 [TBL] [Abstract][Full Text] [Related]
16. Direct demonstration of superoxide anion production during the oxidation of reduced flavin and of its catalytic decomposition by erythrocuprein. Ballou D; Palmer G; Massey V Biochem Biophys Res Commun; 1969 Sep; 36(6):898-904. PubMed ID: 4310146 [No Abstract] [Full Text] [Related]
17. Effect of copper (II)--glycine chelates on degradation of penicillin in mildly acid solution. Harwood RJ; Niebergall PJ; Sugita ET; Schnaare RL J Pharm Sci; 1972 Jan; 61(1):82-6. PubMed ID: 5058650 [No Abstract] [Full Text] [Related]
18. Model studies for molybdenum enzymes. Reduction of flavines by mu-oxo-bis(oxodihydroxo(L-cysteinato)molybdate(V)). Kroneck P; Spence JT Biochemistry; 1973 Nov; 12(24):5020-4. PubMed ID: 4357555 [No Abstract] [Full Text] [Related]
19. Cyanylation of sulfhydryl groups by 2-nitro-5-thiocyanobenzoic acid. High-yield modification and cleavage of peptides at cysteine residues. Degani Y; Patchornik A Biochemistry; 1974 Jan; 13(1):1-11. PubMed ID: 4808702 [No Abstract] [Full Text] [Related]
20. ELECTRON-PARAMAGNETIC-RESONANCE STUDIES OF THE CHLORPROMAZINE FREE RADICAL FORMED DURING ENZYMIC OXIDATION BY PEROXIDASE-HYDROGEN PEROXIDE. PIETTE LH; BULOW G; YAMAZAKI I Biochim Biophys Acta; 1964 Jul; 88():120-9. PubMed ID: 14203140 [No Abstract] [Full Text] [Related] [Next] [New Search]