These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 4305165)
1. Studies of gluconeogenic mitochondrial enzymes. 3. The conversion of alpha-ketoglutarate to glutamate by bovine liver mitochondrial glutamate dehydrogenase and glutamate-oxaloacetate transaminase. Fahien LA; Strmecki M Arch Biochem Biophys; 1969 Mar; 130(1):468-77. PubMed ID: 4305165 [No Abstract] [Full Text] [Related]
2. Studies on gluconeogenic mitochondrial enzymes. II. The conversion of glutamate to alpha-ketoglutarate by bovine liver mitochondrial glutamate dehydrogenase and glutamate-oxaloacetate transaminase. Fahien LA; Strmecki M Arch Biochem Biophys; 1969 Mar; 130(1):456-67. PubMed ID: 4305164 [No Abstract] [Full Text] [Related]
3. Effects of tranquilizers on the glutamate dehydrogenase-glutamate-oxalacetate transaminase complex. Shemisa OA; Fahien LA Mol Pharmacol; 1973 Nov; 9(6):726-35. PubMed ID: 4148653 [No Abstract] [Full Text] [Related]
4. Studies of gluconeogenic mitochondrial enzymes. IV. The conversion of oxaloacetate to fumarate by bovine liver mitochondrial malate dehydrogenase and fumarase. Fahien LA; Strmecki M Arch Biochem Biophys; 1969 Mar; 130(1):478-87. PubMed ID: 4305166 [No Abstract] [Full Text] [Related]
5. The enzyme-enzyme complex of transaminase and glutamate dehydrogenase. Fahien LA; Smith SE J Biol Chem; 1974 May; 249(9):2696-703. PubMed ID: 4857194 [No Abstract] [Full Text] [Related]
6. CONTROL OF GLUTAMATE OXIDATION IN BRAIN AND LIVER MITOCHONDRIAL SYSTEMS. BALAZS R Biochem J; 1965 May; 95(2):497-508. PubMed ID: 14340100 [TBL] [Abstract][Full Text] [Related]
7. Malate dehydrogenases and glutamate dehydrogenase in chick liver and heart during embryonic development. Greenfield PC; Boell EJ J Exp Zool; 1970 Jun; 174(2):115-23. PubMed ID: 4393120 [No Abstract] [Full Text] [Related]
8. Regulation of malate dehydrogenase activity by glutamate, citrate, alpha-ketoglutarate, and multienzyme interaction. Fahien LA; Kmiotek EH; MacDonald MJ; Fibich B; Mandic M J Biol Chem; 1988 Aug; 263(22):10687-97. PubMed ID: 2899080 [TBL] [Abstract][Full Text] [Related]
9. Flow-injection analysis of amino acids and their metabolites by immobilized vitamin B6-dependent enzymes. Sensitive determination of L-aspartate, L-glutamate, 2-oxoglutarate, and oxaloacetate. Kurkijärvi K; Vierijoki T; Korpela T Ann N Y Acad Sci; 1990; 585():394-403. PubMed ID: 1972615 [TBL] [Abstract][Full Text] [Related]
11. An analysis of the activities of 3 key enzymes concerned with the interconversion of -ketoglutarate and glutamate: correlations with free glutamate levels in 20 specific regions of the nervous system. Johnson JL Brain Res; 1972 Oct; 45(1):205-15. PubMed ID: 5075336 [No Abstract] [Full Text] [Related]
12. Glutamate dehydrogenase of lupin nodules: kinetics of the amination reaction. Stone SR; Heyde E; Copeland L Arch Biochem Biophys; 1980 Feb; 199(2):560-71. PubMed ID: 7362245 [No Abstract] [Full Text] [Related]
13. Effect of malate on glutamate dehydrogenase and complexes between glutamate dehydrogenase and mitochondrial aspartate aminotransferase. Fahien LA; Kmiotek E; Kajiwara K Arch Biochem Biophys; 1981 Jun; 209(1):143-51. PubMed ID: 7283433 [No Abstract] [Full Text] [Related]
14. The glutamate dehydrogenases of yeast: extra-mitochondrial enzymes. Hollenberg CP; Riks WF; Borst P Biochim Biophys Acta; 1970 Jan; 201(1):13-9. PubMed ID: 4391662 [No Abstract] [Full Text] [Related]
15. Kinetic advantages of hetero-enzyme complexes with glutamate dehydrogenase and the alpha-ketoglutarate dehydrogenase complex. Fahien LA; MacDonald MJ; Teller JK; Fibich B; Fahien CM J Biol Chem; 1989 Jul; 264(21):12303-12. PubMed ID: 2745445 [TBL] [Abstract][Full Text] [Related]
16. Effects of D-glutamate on mycelial growth and glutamate dehydrogenase enzymes of Coprinus lagopus. Al-Gharawi A; Moore D J Gen Microbiol; 1974 Dec; 85(2):274-82. PubMed ID: 4155717 [No Abstract] [Full Text] [Related]
17. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio. Korge P; Calmettes G; Weiss JN Free Radic Biol Med; 2016 Jul; 96():22-33. PubMed ID: 27068062 [TBL] [Abstract][Full Text] [Related]
18. Studies of gluconeogenic mitochondrial enzymes. V. The effect of transaminases on reactions catalyzed by glutamate dehydrogenase. Fahien LA; Smith SE Arch Biochem Biophys; 1969 Dec; 135(1):136-51. PubMed ID: 4391338 [No Abstract] [Full Text] [Related]
19. CO2 production by extracts of Hymenolepis diminuta (Cestoda: Hymenolepididae) with aspartate and -ketoglutarate as substrates. Nations C; Hicks TC; Ubelaker JE J Parasitol; 1973 Feb; 59(1):112-6. PubMed ID: 4687482 [No Abstract] [Full Text] [Related]
20. Studies of regulatory metabolism in Moniezia expansa: glutamate, and the absence of the gamma-aminobutyrate pathway. Cornish RA; Bryant C Int J Parasitol; 1975 Jun; 5(3):355-62. PubMed ID: 1126788 [No Abstract] [Full Text] [Related] [Next] [New Search]