These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 4305484)

  • 41. The asparagine synthetase of Escherichia coli. II. Studies on mechanism.
    Cedar H; Schwartz JH
    J Biol Chem; 1969 Aug; 244(15):4122-7. PubMed ID: 4895362
    [No Abstract]   [Full Text] [Related]  

  • 42. Specific synthesis of 1-(5-glutamyl)-2-methylhydrazine by glutamine synthetase.
    Rueppel ML; Lundt SL; Gass JD; Meister A
    Biochemistry; 1972 Jul; 11(15):2839-44. PubMed ID: 4402868
    [No Abstract]   [Full Text] [Related]  

  • 43. Formyltetrahydrofolate synthetase. Binding of adenosine triphosphate and related ligands determined by partition equilibrium.
    Curthoys NP; Rabinowitz JC
    J Biol Chem; 1971 Nov; 246(22):6942-52. PubMed ID: 5126227
    [No Abstract]   [Full Text] [Related]  

  • 44. Formation of pyrophosphate during ATP: glutamine synthetase-adenylyltransferase-reaction in E. coli.
    Heinrich CP; Battig FA; Mantel M; Holzer H
    Arch Mikrobiol; 1970; 73(2):104-10. PubMed ID: 4321114
    [No Abstract]   [Full Text] [Related]  

  • 45. The glutamine synthetase deadenylylating enzyme system from Escherichia coli. Resolution into two components, specific nucleotide stimulation, and cofactor requirements.
    Shapiro BM
    Biochemistry; 1969 Feb; 8(2):659-70. PubMed ID: 4893578
    [No Abstract]   [Full Text] [Related]  

  • 46. The mechanism of the succinic thiokinase reaction. Effector role of desulfo-coenzyme A in succinyl phosphate formation.
    Grinnell FL; Nishimura JS
    Biochemistry; 1969 Feb; 8(2):568-74. PubMed ID: 4240088
    [No Abstract]   [Full Text] [Related]  

  • 47. Structure and function of transfer ribonucleic acid. 3. Some properties of a complex between valyl transfer ribonucleic acid synthetase and transfer ribonucleic acid specific for valine.
    Lagerkvist U; Rymo L
    J Biol Chem; 1969 May; 244(9):2476-83. PubMed ID: 4306514
    [No Abstract]   [Full Text] [Related]  

  • 48. Rat liver pyruvate carboxylase. 3. Isotopic exchange studies of the first partial reaction.
    McClure WR; Lardy HA; Cleland WW
    J Biol Chem; 1971 Jun; 246(11):3584-90. PubMed ID: 5103843
    [No Abstract]   [Full Text] [Related]  

  • 49. Mn2+ and substrate interactions with glutamine synthetase from Escherichia coli.
    Hunt JB; Ginsburg A
    J Biol Chem; 1980 Jan; 255(2):590-4. PubMed ID: 6101329
    [No Abstract]   [Full Text] [Related]  

  • 50. Mechanism of the enzymatic inactivation of glutamine synthetase from E. coli.
    Wulff K; Mecke D; Holzer H
    Biochem Biophys Res Commun; 1967 Sep; 28(5):740-5. PubMed ID: 4861255
    [No Abstract]   [Full Text] [Related]  

  • 51. Regulation of glutamine synthetase. I. Purification and properties of glutamine synthetase from Escherichia coli.
    Woolfolk CA; Shapiro B; Stadtman ER
    Arch Biochem Biophys; 1966 Sep; 116(1):177-92. PubMed ID: 5336023
    [No Abstract]   [Full Text] [Related]  

  • 52. Glutamine synthetase from Salmonella typhimurium: manganese(II), substrate, and inhibitor interaction with the unadenylylated enzyme.
    Balakrishnan MS; Villafranca JJ; Brenchley JE
    Arch Biochem Biophys; 1977 Jun; 181(2):603-15. PubMed ID: 20051
    [No Abstract]   [Full Text] [Related]  

  • 53. The ATP-ADP exchange catalyzed by phosphoryl transferase.
    Beyer RE
    Arch Biochem Biophys; 1968 Sep; 127(1):43-53. PubMed ID: 5681427
    [No Abstract]   [Full Text] [Related]  

  • 54. [Analogs of nucleoside polyphosphates. 3. Action of adenosine 5'-phosphohypophosphate on hexokinase and on valyl-tRNA synthetase].
    Remy P; Setondji J; Dirheimer G; Ebel JP
    Biochim Biophys Acta; 1970 Mar; 204(1):31-8. PubMed ID: 4908651
    [No Abstract]   [Full Text] [Related]  

  • 55. The distribution between gamma-glutamylhydrozamate synthetase and L-glutamine-hydroxylamine glutamyltransferase activities in rat tissues. Studies in vitro.
    Herzfeld A
    Biochem J; 1973 May; 133(1):49-57. PubMed ID: 4146508
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of methionine sulfoximine and methionine sulfone on glutamate synthesis in Klebsiella aerogenes.
    Brenchley JE
    J Bacteriol; 1973 May; 114(2):666-73. PubMed ID: 4145197
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phosphorylation of methionine sulfoximine by glutamine synthetase.
    Ronzio RA; Meister A
    Proc Natl Acad Sci U S A; 1968 Jan; 59(1):164-70. PubMed ID: 5242120
    [No Abstract]   [Full Text] [Related]  

  • 58. Studies on the reaction mechanism of adenosine triphosphate: glutamine synthetase adenylyltransferase from Escherichia coli B. Evidence for an ordered mechanism.
    Wohlhueter RM; Ebner E; Wolf DH
    J Biol Chem; 1972 Jul; 247(13):4213-8. PubMed ID: 4402513
    [No Abstract]   [Full Text] [Related]  

  • 59. THE NATURE OF THE INHIBITION IN VITRO OF CEREBRAL GLUTAMINE SYNTHETASE BY THE CONVULSANT, METHIONINE SULFOXIMINE.
    SELLINGER OZ; WEILER P
    Biochem Pharmacol; 1963 Sep; 12():989-1000. PubMed ID: 14068513
    [No Abstract]   [Full Text] [Related]  

  • 60. Identification of L-methionine-S-sulfoximine as the convulsant isomer of methionine sulfoximine.
    Rowe WB; Meister A
    Proc Natl Acad Sci U S A; 1970 Jun; 66(2):500-6. PubMed ID: 4393740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.