BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 43058)

  • 41. [Changes in the system of cyclic nucleotides in irradiated body tissues].
    Vladimirov VG; Antushevich AE
    Radiobiologiia; 1988; 28(2):201-4. PubMed ID: 2896367
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cyclic nucleotide phosphodiesterases.
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 16():1-416. PubMed ID: 6326516
    [No Abstract]   [Full Text] [Related]  

  • 43. Cyclic AMP and cyclic GMP phosphodiesterase inhibition by an antiplatelet agent, 6-[(3-methylene-2-oxo-5-phenyl-5-tetrahydrofuranyl)methoxy)quinol inone (CCT-62).
    Liao CH; Tzeng CC; Teng CM
    Eur J Pharmacol; 1998 May; 349(1):107-14. PubMed ID: 9669503
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Increased cyclic nucleotide phosphodiesterase activity in a mutant S49 lymphoma cell. Characterization and comparison with wild type enzyme activity.
    Brothers VM; Walker N; Bourne HR
    J Biol Chem; 1982 Aug; 257(16):9349-55. PubMed ID: 6286616
    [No Abstract]   [Full Text] [Related]  

  • 45. Regulation of specific forms of cyclic nucleotide phosphodiesterases in cultured cells.
    Manganiello VC; Yamamoto T; Elks M; Lin MC; Vaughan M
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 16():291-301. PubMed ID: 6326529
    [No Abstract]   [Full Text] [Related]  

  • 46. A comparative kinetic study of bovine calmodulin-dependent cyclic nucleotide phosphodiesterase isozymes utilizing cAMP, cGMP and their 2'-O-anthraniloyl-,2'-O-(N-methylanthraniloyl)-derivatives as substrates.
    Grewal J; Karuppiah N; Mutus B
    Biochem Int; 1989 Dec; 19(6):1287-95. PubMed ID: 2561449
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Theoretical analyses of the functioning of the high- and low-Km cyclic nucleotide phosphodiesterases in the regulation of the concentration of adenosine 3',5'-cyclic monophosphate in animal cells.
    Fell DA
    J Theor Biol; 1980 May; 84(2):361-85. PubMed ID: 6251314
    [No Abstract]   [Full Text] [Related]  

  • 48. Cyclic nucleotide phosphodiesterase activity in midpiece and tail of buffalo spermatozoa and its role in sperm motility.
    Bhatnagar SK; Anand SR
    Biochim Biophys Acta; 1982 May; 716(2):133-9. PubMed ID: 6284248
    [No Abstract]   [Full Text] [Related]  

  • 49. Studies on cyclic nucleotide metabolism in Tetrahymena pyriformis: partial characterization of cyclic AMP- and cyclic GMP-dependent phosphodiesterases.
    Kudo S; Nakazawa K; Nozawa Y
    J Protozool; 1980 Aug; 27(3):342-5. PubMed ID: 6109021
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of guanylate cyclase activity in mouse embryonic lung.
    Macchia V; Beguinot L; Garbi C; Alescio T
    Acta Embryol Exp (Palermo); 1978; (2):213-27. PubMed ID: 34309
    [No Abstract]   [Full Text] [Related]  

  • 51. Modes of action of hypoxanthine, inosine and inosine 5'-monophosphate on cyclic nucleotide phosphodiesterase from bovine brain.
    Liang CM; Liu YP; Chabner BA
    Biochem Pharmacol; 1980 Feb; 29(3):277-82. PubMed ID: 6244836
    [No Abstract]   [Full Text] [Related]  

  • 52. Effect of 1-(3-chloroanilino)-4-phenylphthalazine (MY-5445), a specific inhibitor of cyclic GMP phosphodiesterase, on human platelet aggregation.
    Hagiwara M; Endo T; Kanayama T; Hidaka H
    J Pharmacol Exp Ther; 1984 Feb; 228(2):467-71. PubMed ID: 6141286
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The cGMP system in irradiated animals. Changes in cGMP content and activities of guanylate cyclase and cyclic nucleotide phosphodiesterase.
    Sobolev AS; Tertov VV; Rybalkin SD
    Acta Radiol Oncol; 1984; 23(5):367-73. PubMed ID: 6150603
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Species-specific aggregation factor in sponges. VII. Its effect on cyclic amp and cyclic gmp metabolism in cells of Geodia cydonium.
    Müller WE; Müller I; Zahn RK; Kurelec B
    Cell Tissue Kinet; 1978 Jan; 11(1):23-32. PubMed ID: 23901
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of Ca2+ and calmodulin on cyclic nucleotide metabolism in neurosecretosomes isolated from ox neurohypophyses.
    Dartt DA; Torp-Pedersen C; Thorn NA
    Brain Res; 1981 Jan; 204(1):121-8. PubMed ID: 6113872
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The enzymatic preparation of [alpha-32P]ATP, [alpha-32P]GTP, [32P]cAMP, and [32P]cGMP, and their use in the assay of adenylate and guanylate cyclases and cyclic nucleotide phosphodiesterases.
    Johnson RA; Walseth TF
    Adv Cyclic Nucleotide Res; 1979; 10():135-67. PubMed ID: 36738
    [No Abstract]   [Full Text] [Related]  

  • 57. Cyclic nucleotide metabolism in rat colonic epithelial cells with different proliferative activities.
    Craven PA; DeRubertis FR
    Biochim Biophys Acta; 1981 Aug; 676(2):155-69. PubMed ID: 6167289
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A reverse-phase HPLC method for cyclic nucleotide phosphodiesterases activity and classification.
    Spoto G; Berardi S; Ajerba G; De Laurentiis V
    Adv Exp Med Biol; 1994; 370():815-20. PubMed ID: 7661030
    [No Abstract]   [Full Text] [Related]  

  • 59. Cyclic nucleotides in stroke and related cerebrovascular disorders.
    Palmer GC
    Life Sci; 1985 May; 36(21):1995-2006. PubMed ID: 2860549
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Involvements of cyclic nucleotide systems in enlarged mice lungs produced by butylated hydroxytoluene.
    Kuo JF; Brackett NL; Stubbs JW; Shoji M; Helfman DM
    Biochem Pharmacol; 1978; 27(12):1671-5. PubMed ID: 212077
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.