These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 4307180)

  • 1. Transport phenomena associated with the deposition and disappearance of pyrophosphate granules in Tetrahymena pyriformis.
    Rosenberg H; Munk N
    Biochim Biophys Acta; 1969 Jun; 184(1):191-7. PubMed ID: 4307180
    [No Abstract]   [Full Text] [Related]  

  • 2. On the deposition and utilization of inorganic pyrophosphate in Tetrahymena pyriformis.
    Munk N; Rosenberg H
    Biochim Biophys Acta; 1969 May; 177(3):629-40. PubMed ID: 4306844
    [No Abstract]   [Full Text] [Related]  

  • 3. [Biochemical and clinical features of pyrophosphate metabolism. IV. Inhibition of human renal pyrophosphatase by inorganic orthophosphate in healthy persons and patients with calculi].
    Stachura G; Thielmann K; Schulze M; Schneider HJ
    Urol Int; 1970; 25(1):26-31. PubMed ID: 4317193
    [No Abstract]   [Full Text] [Related]  

  • 4. Influence of ions and tonicity on RNA metabolism in Tetrahymena pyriformis.
    Cline SG
    J Cell Physiol; 1966 Oct; 68(2):157-63. PubMed ID: 5964357
    [No Abstract]   [Full Text] [Related]  

  • 5. Inhibition of family II pyrophosphatases by analogs of pyrophosphate and phosphate.
    Zyryanov AB; Lahti R; Baykov AA
    Biochemistry (Mosc); 2005 Aug; 70(8):908-12. PubMed ID: 16212547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Biochemical and clinical aspects of pyrophosphate metabolism. V. The activity of inorganic pyrophosphatase (E. C. 3.6.1.1) in human and rat kidney during varying orthophosphate uptake].
    Schulze M; Hörenz D; Rhinow B; Wasmund HG; Schneider HJ; Thielmann K
    Acta Biol Med Ger; 1972; 28(3):459-63. PubMed ID: 4114991
    [No Abstract]   [Full Text] [Related]  

  • 7. Uptake of 32p-orthophosphate and incorporation into phospholipids in Tetrahymena pyriformis W exposed to phenothiazine derivatives.
    Rogers CG
    Can J Biochem; 1968 Apr; 46(4):331-9. PubMed ID: 5656086
    [No Abstract]   [Full Text] [Related]  

  • 8. Impact of changes in intracellular Ca2+ and K+ concentration on the development of hormonal imprinting in a Tetrahymena model system.
    Köhidai L; Muto Y; Nozawa Y; Csaba G
    Cell Mol Biol; 1987; 33(2):265-74. PubMed ID: 3111707
    [No Abstract]   [Full Text] [Related]  

  • 9. Formation of ribosomes in Tetrahymena pyriformis.
    Leick V; Plesner P
    Biochim Biophys Acta; 1968 Dec; 169(2):398-408. PubMed ID: 5702968
    [No Abstract]   [Full Text] [Related]  

  • 10. Orthophosphate flux across the membrane of Tetrahymena pyriformis W.
    Pruett PO; Conner RL
    J Cell Physiol; 1967 Oct; 70(2):217-24. PubMed ID: 5583337
    [No Abstract]   [Full Text] [Related]  

  • 11. [The participation of ATP in the motive functions of Tetrahymena pyriformis].
    Burnashevasa ; Karausheva TP
    Biokhimiia; 1967; 32(2):270-6. PubMed ID: 4232535
    [No Abstract]   [Full Text] [Related]  

  • 12. Cholesterol inhibition of pentacyclic triterpenoid biosynthesis in Tetrahymena pyriformis.
    Conner RL; Landrey JR; Burns CH; Mallory FB
    J Protozool; 1968 Aug; 15(3):600-5. PubMed ID: 5703082
    [No Abstract]   [Full Text] [Related]  

  • 13. Proceedings: Histochemical distribution of alkaline phosphates and alkaline pyrophosphates in relation to matrix production and calcium salts deposition.
    Badi MH
    West Afr J Pharmacol Drug Res; 1974 Dec; 2(1):83P. PubMed ID: 4377833
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of calcium and strontium on divalent ion content of refractive granules in Tetrahymena pyriformis.
    Coleman JR; Nilsson JR; Warner RR; Batt P
    Exp Cell Res; 1973 Jul; 80(1):1-9. PubMed ID: 4206020
    [No Abstract]   [Full Text] [Related]  

  • 15. Pyrophosphate, phosphonates and pyrophosphatases in the regulation of calcification and calcium homeostasis.
    Russell RG; Fleisch H
    Proc R Soc Med; 1970 Sep; 63(9):876. PubMed ID: 4320061
    [No Abstract]   [Full Text] [Related]  

  • 16. Phosphatidylcholine biosynthesis in Tetrahymena pyriformis.
    Smith JD; Law JH
    Biochim Biophys Acta; 1970 Feb; 202(1):141-52. PubMed ID: 5417179
    [No Abstract]   [Full Text] [Related]  

  • 17. Changes in calcium and magnesium levels during heat-shock synchronized cell division in Tetrahymena.
    Walker GM; Zeuthen E
    Exp Cell Res; 1980 Jun; 127(2):487-90. PubMed ID: 6991266
    [No Abstract]   [Full Text] [Related]  

  • 18. [Studies on phosphoric acid ester resistance and on the mechanism of development of this resistance in Tetrahymena pyriformis G1].
    Volm M
    Z Naturforsch B; 1968 Jun; 23(6):829-33. PubMed ID: 4386583
    [No Abstract]   [Full Text] [Related]  

  • 19. Formation and decomposition of pyrophosphate related to bacterial photophosphorylation.
    Nishikawa K; Hosoi K; Suzuki J; Yoshimura S; Horio T
    J Biochem; 1973 Mar; 73(3):537-53. PubMed ID: 4353266
    [No Abstract]   [Full Text] [Related]  

  • 20. Stimulation of growth and metabolism in Tetrahymena pyriformis by antimycin A.
    Shug AL; Ferguson S; Shrago E
    Biochem Biophys Res Commun; 1968 Jul; 32(1):81-5. PubMed ID: 5665248
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.