BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 4309878)

  • 1. Biological effects of substituting cytosine for 5-hydroxymethylcytosine in the deoxyribonucleic acid of bacteriophage T4.
    Kutter EM; Wiberg JS
    J Virol; 1969 Oct; 4(4):439-53. PubMed ID: 4309878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SP62, a viable mutant of bacteriophage T4D defective in regulation of phage enzyme synthesis.
    Wiberg JS; Mendelsohn S; Warner V; Hercules K; Aldrich C; Munro JL
    J Virol; 1973 Oct; 12(4):775-92. PubMed ID: 4359953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacteriophage T4 endonucleases II and IV, oppositely affected by dCMP hydroxymethylase activity, have different roles in the degradation and in the RNA polymerase-dependent replication of T4 cytosine-containing DNA.
    Carlson K; Overvatn A
    Genetics; 1986 Nov; 114(3):669-85. PubMed ID: 2431959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of T4 DNA and bacteriophage in the absence of dCMP hydroxymethylase.
    Morton D; Kutter EM; Guttman BS
    J Virol; 1978 Oct; 28(1):262-9. PubMed ID: 212605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of cytosine-containing deoxyribonucleic acid after infection by certain T4 rII-D deletion mutants.
    Bruner R; Souther A; Suggs S
    J Virol; 1972 Jul; 10(1):88-92. PubMed ID: 4339199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct participation of dCMP hydroxymethylase in synthesis of bacteriophage T4 DNA.
    Wovcha MG; Tomich PK; Chiu CS; Greenberg GR
    Proc Natl Acad Sci U S A; 1973 Aug; 70(8):2196-200. PubMed ID: 4525160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo cleavage of cytosine-containing bacteriophage T4 DNA to genetically distinct, discretely sized fragments.
    Carlson K; Wiberg JS
    J Virol; 1983 Oct; 48(1):18-30. PubMed ID: 6887350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amber mutants of bacteriophage T4 defective in deoxycytidine diphosphatase and deoxycytidine triphosphatase. On the role of 5-hydroxymethylcytosine in bacteriophage deoxyribonucleic acid.
    Wiberg JS
    J Biol Chem; 1967 Dec; 242(24):5824-9. PubMed ID: 4319673
    [No Abstract]   [Full Text] [Related]  

  • 9. Control of gene function in baceriophage T4. II. Synthes of messenger ribonucleiccid and proei after interrupting deoxyribonucleic acid replication and glucosylation.
    Sauerbier W; räutigam AR
    J Virol; 1970 Feb; 5(2):179-87. PubMed ID: 4910356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of amber mutations of bacteriophage T4 gene 43 (DNA polymerase) by translational ambiguity.
    Karam JD; O'Donnell PV
    J Virol; 1973 Jun; 11(6):933-45. PubMed ID: 4351461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of functional bacteriophage T4-delayed early mRNA in the absence of protein synthesis.
    Morse JW; Cohen PS
    J Virol; 1975 Aug; 16(2):330-9. PubMed ID: 168406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacteriophage-induced functions in Escherichia coli K (lambda) infected with rII mutants of bacteriophage T4.
    Rutberg B; Rutberg L
    J Bacteriol; 1966 Jan; 91(1):76-80. PubMed ID: 4285536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A type IV modification dependent restriction nuclease that targets glucosylated hydroxymethyl cytosine modified DNAs.
    Bair CL; Black LW
    J Mol Biol; 2007 Feb; 366(3):768-78. PubMed ID: 17188297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The production of undegraded cytosine-containing DNA by bacteriophage T4 in the absence of dCTPase and endonucleases II and IV, and its effects on T4-directed protein synthesis.
    Kutter E; Beug A; Sluss R; Jensen L; Bradley D
    J Mol Biol; 1975 Dec; 99(4):591-607. PubMed ID: 175166
    [No Abstract]   [Full Text] [Related]  

  • 15. Exclusion of glucosyl-hydroxymethylcytosine DNA containing bacteriophages is overcome by the injected protein inhibitor IPI*.
    Bair CL; Rifat D; Black LW
    J Mol Biol; 2007 Feb; 366(3):779-89. PubMed ID: 17188711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent Modification of Bacteriophage T4 DNA Inhibits CRISPR-Cas9.
    Bryson AL; Hwang Y; Sherrill-Mix S; Wu GD; Lewis JD; Black L; Clark TA; Bushman FD
    mBio; 2015 Jun; 6(3):e00648. PubMed ID: 26081634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Functional interactions of the genomes of Shigella sonnei phages and Escherichia coli phage T4 in mixed infection].
    Zamchuk LA; Nikolozishvili MT
    Genetika; 1979; 15(10):1767-74. PubMed ID: 387521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacteriophage T4-related macromolecular synthesis under restriction of plasmid Rts1.
    Raghavan N; Ishaq M; Kaji A
    J Virol; 1980 Aug; 35(2):551-4. PubMed ID: 6255193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of bacteriophage-induced enzyme synthesis in cells infected with a temperature-sensitive mutant.
    Mathews CK; Kessin RH
    J Virol; 1967 Feb; 1(1):92-6. PubMed ID: 4918234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacteriophage T4 alc gene product: general inhibitor of transcription from cytosine-containing DNA.
    Kutter EM; Bradley D; Schenck R; Guttman BS; Laiken R
    J Virol; 1981 Dec; 40(3):822-9. PubMed ID: 7321103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.