These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 4310058)

  • 1. The metabolism of 4-hydroxypyridine by Agrobacterium sp.: a new ring cleavage of the pyridine nucleus.
    Houghton C; Watson GK; Cain RB
    Biochem J; 1969 Oct; 114(4):75P. PubMed ID: 4310058
    [No Abstract]   [Full Text] [Related]  

  • 2. Microbial metabolism of the pyridine ring. The hydroxylation of 4-hydroxypyridine to pyridine-3,4-diol (3,4-dihydroxypyridine) by 4-hydroxypyridine-3-hydroxylase.
    Watson GK; Houghton C; Cain RB
    Biochem J; 1974 May; 140(2):265-76. PubMed ID: 4156169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial metabolism of the pyridine ring. The metabolism of pyridine-3,4-diol (3,4-dihydroxypyridine) by Agrobacterium sp.
    Watson GK; Houghton C; Cain RB
    Biochem J; 1974 May; 140(2):277-92. PubMed ID: 4375963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial metabolism of the pyridine ring. Formation of pyridinediols (dihydroxypyridines) as intermediates in the degradation of pyridine compounds by micro-organisms.
    Houghton C; Cain RB
    Biochem J; 1972 Dec; 130(3):879-93. PubMed ID: 4664939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase with FAD, substrates, and analogues. Spectral and fluorescence investigations.
    Kishore GM; Snell EE
    J Biol Chem; 1981 May; 256(9):4234-40. PubMed ID: 7217081
    [No Abstract]   [Full Text] [Related]  

  • 6. Kinetic investigations on a flavoprotein oxygenase, 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.
    Kishore GM; Snell EE
    J Biol Chem; 1981 May; 256(9):4228-33. PubMed ID: 7217080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The bacterial oxidation of vitamin B6. VII. Purification, properties, and mechanism of action of an oxygenase which cleaves the 3-hydroxypyridine ring.
    Sparrow LG; Ho PP; Sundaram TK; Zach D; Nyns EJ; Snell EE
    J Biol Chem; 1969 May; 244(10):2590-600. PubMed ID: 4306031
    [No Abstract]   [Full Text] [Related]  

  • 8. Role of the Tyr270 residue in 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase from Mesorhizobium loti.
    Kobayashi J; Yoshida H; Yagi T; Kamitori S; Hayashi H; Mizutani K; Takahashi N; Mikami B
    J Biosci Bioeng; 2017 Feb; 123(2):154-162. PubMed ID: 27568368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyridine as novel substrate for regioselective oxygenation with aromatic peroxygenase from Agrocybe aegerita.
    Ullrich R; Dolge C; Kluge M; Hofrichter M
    FEBS Lett; 2008 Dec; 582(29):4100-6. PubMed ID: 19022254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 6-hydroxy-3-succinoylpyridine hydroxylase catalyzes a central step of nicotine degradation in Agrobacterium tumefaciens S33.
    Li H; Xie K; Huang H; Wang S
    PLoS One; 2014; 9(7):e103324. PubMed ID: 25054198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pusillimonas sp. 5HP degrading 5-hydroxypicolinic acid.
    Karvelis L; Gasparavičiūtė R; Klimavičius A; Jančienė R; Stankevičiūtė J; Meškys R
    Biodegradation; 2014 Feb; 25(1):11-9. PubMed ID: 23543363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flavoenzymes catalyzing oxidative aromatic ring-cleavage reactions.
    Chaiyen P
    Arch Biochem Biophys; 2010 Jan; 493(1):62-70. PubMed ID: 19728986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial metabolism of the pyridine ring. Metabolism of 2- and 3-hydroxypyridines by the maleamate pathway in Achromobacter sp.
    Cain RB; Houghton C; Wright KA
    Biochem J; 1974 May; 140(2):293-300. PubMed ID: 4455192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of nilvadipine, a new dihydropyridine calcium antagonist, to the corresponding pyridine by rat liver microsomes.
    Niwa T; Tokuma Y; Noguchi H
    Xenobiotica; 1988 Feb; 18(2):217-24. PubMed ID: 3376493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A soluble methylene hydroxylase system: structure and role of cytochrome P-450 and iron-sulfur protein components.
    Gunsalus IC
    Hoppe Seylers Z Physiol Chem; 1968 Nov; 349(11):1610-3. PubMed ID: 4317681
    [No Abstract]   [Full Text] [Related]  

  • 16. [Kinetic parameters of reduction of pyridine nucleotides as indices of the energy production system status].
    Khazanov VA; Smirnova NB
    Biull Eksp Biol Med; 1999 Mar; 127(3):287-90. PubMed ID: 10225101
    [No Abstract]   [Full Text] [Related]  

  • 17. Competition for electrons between mono-oxygenations of pyridine and 2-hydroxypyridine.
    Yang C; Tang Y; Xu H; Yan N; Li N; Zhang Y; Rittmann BE
    Biodegradation; 2018 Oct; 29(5):419-427. PubMed ID: 29785468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereospecificity of hydride transfer in the flavin mono-oxygenase orcinol hydroxylase.
    Higgins IJ; Ribbons DW
    Biochem J; 1972 Apr; 127(3):65P. PubMed ID: 4342495
    [No Abstract]   [Full Text] [Related]  

  • 19. Pyridine Dinucleotides from Molecules to Man.
    Fessel JP; Oldham WM
    Antioxid Redox Signal; 2018 Jan; 28(3):180-212. PubMed ID: 28635300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial metabolism of 2-hydroxypyridine.
    Gupta RC; Shukla OP
    Indian J Biochem Biophys; 1975 Sep; 12(3):296-8. PubMed ID: 1221039
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.