BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 4310080)

  • 1. Mechanism of action of the antifungal antibiotic pyrrolnitrin.
    Tripathi RK; Gottlieb D
    J Bacteriol; 1969 Oct; 100(1):310-8. PubMed ID: 4310080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiratory chain of a pathogenic fungus, Microsporum gypseum: effect of the antifungal agent pyrrolnitrin.
    Wong DT; Horng JS; Gordee RS
    J Bacteriol; 1971 Apr; 106(1):168-73. PubMed ID: 4323963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of action of the fungicide thiabendazole, 2-(4'-thiazolyl) benzimidazole.
    Allen PM; Gottlieb D
    Appl Microbiol; 1970 Dec; 20(6):919-26. PubMed ID: 5531164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mode of action of oxathiin systemic fungicides. V. Effect on electron transport system of Ustilago maydis and Saccharomyces cerevisiae.
    Ulrich JT; Mathre DE
    J Bacteriol; 1972 May; 110(2):628-32. PubMed ID: 4336692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of pyrrolnitrin on electron transport and oxidative phosphorylation in mitochondria isolated from Neurospora crassa.
    Lambowitz AM; Slayman CW
    J Bacteriol; 1972 Nov; 112(2):1020-2. PubMed ID: 4343822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mode of action of lomofungin.
    Gottlieb D; Nicolas G
    Appl Microbiol; 1969 Jul; 18(1):35-40. PubMed ID: 5803629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flavensomycin, an inhibitor of enzyme reactions involving hydrogen transfer.
    Gottlieb D; Inoue Y
    J Bacteriol; 1967 Oct; 94(4):844-9. PubMed ID: 4383133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RESPIRATORY PATHWAYS IN THE MYCOPLASMA. II. PATHWAY OF ELECTRON TRANSPORT DURING OXIDATION OF REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE BY MYCOPLASMA HOMINIS.
    VANDEMARK PJ; SMITH PF
    J Bacteriol; 1964 Jul; 88(1):122-9. PubMed ID: 14197876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c oxidoreductases probed by sensitivity to quinone-related inhibitors.
    Yamashita A; Miyoshi H; Hatano T; Iwamura H
    J Biochem; 1996 Aug; 120(2):377-84. PubMed ID: 8889824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct interaction between yeast NADH-ubiquinone oxidoreductase, succinate-ubiquinone oxidoreductase, and ubiquinol-cytochrome c oxidoreductase in the reduction of exogenous quinones.
    Zhu QS; Beattie DS
    J Biol Chem; 1988 Jan; 263(1):193-9. PubMed ID: 2826438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of succinate in the respiratory chain of Trypanosoma brucei procyclic trypomastigotes.
    Turrens JF
    Biochem J; 1989 Apr; 259(2):363-8. PubMed ID: 2719653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of NADH by a rotenone and antimycin-sensitive pathway in the mitochondrion of procyclic Trypanosoma brucei brucei.
    Beattie DS; Obungu VH; Kiaira JK
    Mol Biochem Parasitol; 1994 Mar; 64(1):87-94. PubMed ID: 8078526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction.
    Berridge MV; Tan AS
    Arch Biochem Biophys; 1993 Jun; 303(2):474-82. PubMed ID: 8390225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles.
    Poderoso JJ; Carreras MC; Lisdero C; Riobó N; Schöpfer F; Boveris A
    Arch Biochem Biophys; 1996 Apr; 328(1):85-92. PubMed ID: 8638942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct interaction between the internal NADH: ubiquinone oxidoreductase and ubiquinol:cytochrome c oxidoreductase in the reduction of exogenous quinones by yeast mitochondria.
    Beattie DS; Japa S; Howton M; Zhu QS
    Arch Biochem Biophys; 1992 Feb; 292(2):499-505. PubMed ID: 1309974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple sites of inhibition of mitochondrial electron transport by local anesthetics.
    Chazotte B; Vanderkooi G
    Biochim Biophys Acta; 1981 Jul; 636(2):153-61. PubMed ID: 6269599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saccharomyces cerevisiae coq10 null mutants are responsive to antimycin A.
    Busso C; Tahara EB; Ogusucu R; Augusto O; Ferreira-Junior JR; Tzagoloff A; Kowaltowski AJ; Barros MH
    FEBS J; 2010 Nov; 277(21):4530-8. PubMed ID: 20875086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An antimycin-insensitive succinate-cytochrome c reductase activity in pure reconstitutively active succinate dehydrogenase.
    Yu L; McCurley JP; Yu CA
    Biochim Biophys Acta; 1987 Aug; 893(1):75-82. PubMed ID: 3038186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucagon treatment of rats activates the respiratory chain of liver mitochondria at more than one site.
    Halestrap AP
    Biochim Biophys Acta; 1987 Feb; 927(2):280-90. PubMed ID: 3028493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sites of inhibition of mitochondrial electron transport in macrophage-injured neoplastic cells.
    Granger DL; Lehninger AL
    J Cell Biol; 1982 Nov; 95(2 Pt 1):527-35. PubMed ID: 6292238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.