These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 4310569)

  • 1. Intestinal calcium absorption: nature of defect in chronic renal disease.
    Avioli LV; Scott S; Lee SW; De Luca HF
    Science; 1969 Nov; 166(3909):1154-6. PubMed ID: 4310569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nature of vitamin D resistance in experimental uremia.
    Kimberg DV; Baerg RD; Gershon E
    Arch Intern Med; 1970 Nov; 126(5):891-5. PubMed ID: 4319936
    [No Abstract]   [Full Text] [Related]  

  • 3. Calcium-binding protein and calcium absorption after vitamin D administration.
    Harmeyer J; Deluca HF
    Arch Biochem Biophys; 1969 Sep; 133(2):247-54. PubMed ID: 4309590
    [No Abstract]   [Full Text] [Related]  

  • 4. Biologic effects of 1,25-dihydroxycholecalciferol (a highly active vitamin D metabolite) in acutely uremic rats.
    Wong RG; Norman AW; Reddy CR; Coburn JW
    J Clin Invest; 1972 May; 51(5):1287-91. PubMed ID: 4341503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitamin D-induced calcium-binding protein of intestinal mucosa. Relation to vitamin D dose level and lag period.
    Ebel JG; Taylor AN; Wasserman RH
    Am J Clin Nutr; 1969 Apr; 22(4):431-6. PubMed ID: 4305086
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of renal insufficiency on the active transport of calcium by the small intestine.
    Baerg RD; Kimberg DV; Gershon E
    J Clin Invest; 1970 Jun; 49(6):1288-300. PubMed ID: 5422027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intestinal transport of calcium in experimental uremia.
    Ritz E; Andrassy K
    Isr J Med Sci; 1971 Mar; 7(3):391-2. PubMed ID: 5567489
    [No Abstract]   [Full Text] [Related]  

  • 8. The effect of chronic uremia on intestinal mitochondrial activity.
    Russell JE; Avioli LV
    J Lab Clin Med; 1974 Sep; 84(3):317-26. PubMed ID: 4854749
    [No Abstract]   [Full Text] [Related]  

  • 9. Calcium-binding protein in the duodenal mucosa of uremic patients and normal subjects.
    Piazolo P; Hotz J; Helmke K; Franz HE; Schleyer M
    Kidney Int; 1975 Aug; 8(2):110-8. PubMed ID: 1160228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanism and nature of the defect in intestinal absorption of calcium in uremia.
    Brickman AS; Massry SG; Norman AW; Coburn JW
    Kidney Int Suppl; 1975 Jan; (2):113-7. PubMed ID: 1057670
    [No Abstract]   [Full Text] [Related]  

  • 11. Relationship of duodenal calcium-binding protein to calcium absorption in the laying fowl.
    Bar A; Hurwitz S
    Comp Biochem Physiol B; 1972 Apr; 41(4):735-44. PubMed ID: 4338067
    [No Abstract]   [Full Text] [Related]  

  • 12. The response of intestinal calcium transport to 25-hydroxy and 1,25-dihydroxy vitamin D in nephrectomized rats.
    Boyle IT; Miravet L; Gray RW; Holick MF; Deluca HF
    Endocrinology; 1972 Mar; 90(3):605-8. PubMed ID: 4333142
    [No Abstract]   [Full Text] [Related]  

  • 13. Impaired intestinal absorption of vitamin D3 in azotemic rats.
    Vaziri ND; Hollander D; Hung EK; Vo M; Dadufalza L
    Am J Clin Nutr; 1983 Mar; 37(3):403-6. PubMed ID: 6299090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embryonic chick intestine in organ culture. A unique system for the study of the intestinal calcium absorptive mechanism.
    Corradino RA
    J Cell Biol; 1973 Jul; 58(1):64-78. PubMed ID: 4353639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intestinal absorption of calcium.
    Avioli LV
    Arch Intern Med; 1972 Feb; 129(2):345-55. PubMed ID: 4258092
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of vitamin D3 and other factors on phosphate absorption by the chick.
    Nutr Rev; 1973 Aug; 31(8):253-5. PubMed ID: 4357204
    [No Abstract]   [Full Text] [Related]  

  • 17. Inhibitory effect of cadmium on vitamin D-stimulated calcium transport in rat duodenum in vitro.
    Tsuruki F; Otawara Y; Wung HL; Moriuchi S; Hosoya N
    J Nutr Sci Vitaminol (Tokyo); 1978; 24(3):237-42. PubMed ID: 211209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Action of 1,25-dihydroxycholecalciferol, a potent, kidney-produced metabolite of vitamin D3, in uremic man.
    Brickman AS; Coburn JW; Norman AW
    N Engl J Med; 1972 Nov; 287(18):891-5. PubMed ID: 4342432
    [No Abstract]   [Full Text] [Related]  

  • 19. Calciferol metabolism and intestinal calcium transport in the chick with reduced renal function.
    Hartenbower DL; Coburn JW; Reddy CR; Norman AW
    J Lab Clin Med; 1974 Jan; 83(1):38-45. PubMed ID: 4357619
    [No Abstract]   [Full Text] [Related]  

  • 20. [Reduction of calcium-binding protein in the mucosa of the small intestine in uremic patients with renal osteodystrophy].
    Piazolo PJ; Hotz J; Helmke K; Franz HE; Goebell H
    Z Gastroenterol; 1974 Jun; 12(4):273-6. PubMed ID: 4428818
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.