BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 431117)

  • 21. In vitro and in vivo evaluation of Dideco's paediatric cardiopulmonary circuit for neonates weighing less than five kilograms.
    Thiara AS; Eggereide V; Pedersen T; Lindberg H; Fiane AE
    Perfusion; 2010 Jul; 25(4):229-35. PubMed ID: 20576728
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gaseous microemboli production of bubble and membrane oxygenators.
    Pearson DT; Holden MP; Poslad SJ
    Life Support Syst; 1986; 4 Suppl 1():198-208. PubMed ID: 3747601
    [No Abstract]   [Full Text] [Related]  

  • 23. Venous air embolism.
    Pickard LR
    Ann Thorac Surg; 1982 Jan; 33(1):102-3. PubMed ID: 7065758
    [No Abstract]   [Full Text] [Related]  

  • 24. Foam formation and acute air emboli with the maquet paediatric Quadrox I: a word of caution.
    Fouilloux V; Davey L; Van Arsdell GS; Honjo O
    Interact Cardiovasc Thorac Surg; 2014 Jul; 19(1):163-5. PubMed ID: 24706171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The detection of microemboli in the middle cerebral artery during cardiopulmonary bypass: a transcranial Doppler ultrasound investigation using membrane and bubble oxygenators.
    Padayachee TS; Parsons S; Theobold R; Linley J; Gosling RG; Deverall PB
    Ann Thorac Surg; 1987 Sep; 44(3):298-302. PubMed ID: 2957966
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clinical evaluation of the air-handling properties of contemporary oxygenators with integrated arterial filter.
    Stehouwer MC; Legg KR; de Vroege R; Kelder JC; Hofman E; de Mol BA; Bruins P
    Perfusion; 2017 Mar; 32(2):118-125. PubMed ID: 27516417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of oxygenator characteristics on its capability to remove gaseous microemboli.
    De Somer F
    J Extra Corpor Technol; 2007 Dec; 39(4):271-3. PubMed ID: 18293817
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate--a new concept.
    Allen BS; Veluz JS; Buckberg GD; Aeberhard E; Ignarro LJ
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):625-32. PubMed ID: 12658205
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Massive air embolism during cardiopulmonary bypass--a case report of successful management by temporary retrograde perfusion through the superior vena cava].
    Noritake S; Kitayama H; Matsuno S; Ando F; Kusumoto Y; Nakamura Y; Ban T
    Kyobu Geka; 1985 Apr; 38(4):274-7. PubMed ID: 3873564
    [No Abstract]   [Full Text] [Related]  

  • 30. [The treatment of arterial gas embolism with hyperbaric oxygenation].
    Pelaia P; Rocco M; Tritapepe L; Bortone C
    Minerva Anestesiol; 1992 Oct; 58(10):827-30. PubMed ID: 1461466
    [No Abstract]   [Full Text] [Related]  

  • 31. Validation of a rat model of cardiopulmonary bypass with a new miniaturized hollow fiber oxygenator.
    Cresce GD; Walpoth BH; Mugnai D; Innocente F; Rungatscher A; Luciani GB; Zaniboni A; Battistuzzi G; Tessari M; Kalangos A; Mazzucco A; Faggian G
    ASAIO J; 2008; 54(5):514-8. PubMed ID: 18812744
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assisted venous drainage presents the risk of undetected air microembolism.
    Lapietra A; Grossi EA; Pua BB; Esposito RA; Galloway AC; Derivaux CC; Glassman LR; Culliford AT; Ribakove GH; Colvin SB
    J Thorac Cardiovasc Surg; 2000 Nov; 120(5):856-62. PubMed ID: 11044310
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simple system for deairing the heart after cardiopulmonary bypass.
    Salzano RP; Khachane VB
    Ann Thorac Surg; 1996 Nov; 62(5):1537-8. PubMed ID: 8893608
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low-level alarm and bubble detector system for cardiopulmonary bypass.
    Hertzberg G
    Clin Eng News; 1977; 5(2):8. PubMed ID: 10236174
    [No Abstract]   [Full Text] [Related]  

  • 35. Elimination of sevoflurane is reduced in plasma-tight compared to conventional membrane oxygenators.
    Prasser C; Zelenka M; Gruber M; Philipp A; Keyser A; Wiesenack C
    Eur J Anaesthesiol; 2008 Feb; 25(2):152-7. PubMed ID: 17655810
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of microbubbles released by oxygenators during cardiopulmonary bypass by intraoperative transesophageal echocardiography.
    Meloni L; Abbruzzese PA; Cardu G; Aru GM; Loriga P; Ricchi A; Martelli V; Cherchi A
    Am J Cardiol; 1990 Aug; 66(4):511-4. PubMed ID: 2386124
    [No Abstract]   [Full Text] [Related]  

  • 37. Oxygenation strategy and neurologic damage after deep hypothermic circulatory arrest. I. Gaseous microemboli.
    Nollert G; Nagashima M; Bucerius J; Shin'oka T; Jonas RA
    J Thorac Cardiovasc Surg; 1999 Jun; 117(6):1166-71. PubMed ID: 10343268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biophysical aspects of gas bubbles in blood.
    Butler BD
    Med Instrum; 1985; 19(2):59-62. PubMed ID: 3889566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of two different blood pumps on delivery of gaseous microemboli during pulsatile and nonpulsatile perfusion in a simulated infant CPB model.
    Wang S; Kunselman AR; Myers JL; Undar A
    ASAIO J; 2008; 54(5):538-41. PubMed ID: 18812749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel measurement and delivery system for synchronizing oxygen gas flow with blood flow during cardiopulmonary bypass.
    Okahara S; Ninomiya S; Miyamoto S; Takahashi H; Kurosaki T; Sueda T
    Perfusion; 2013 Sep; 28(5):403-8. PubMed ID: 23633506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.