These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 4311215)

  • 21. The interaction of monovalent cations with the sodium pump of low-potassium goat erythrocytes.
    Cavieres JD; Ellory JC
    J Physiol; 1977 Sep; 271(1):289-318. PubMed ID: 144181
    [TBL] [Abstract][Full Text] [Related]  

  • 22. (Na+-K+)-activated ATPase in cattle erythrocytes.
    Ellory JC; Carleton S
    Biochim Biophys Acta; 1974 Sep; 363(3):397-403. PubMed ID: 4282249
    [No Abstract]   [Full Text] [Related]  

  • 23. The effects of Ca2+ on ATPase and phosphatase activities of erythrocyte membranes.
    Rega AF; Richards DE; Garrahan PJ
    Ann N Y Acad Sci; 1974; 242(0):317-23. PubMed ID: 4372927
    [No Abstract]   [Full Text] [Related]  

  • 24. Comparative properties of high potassium and low potassium sheep erythrocyte membrane sodium-activated adenosine triphosphatase.
    Whittington ES; Blostein R
    J Biol Chem; 1971 Jun; 246(11):3518-23. PubMed ID: 4325388
    [No Abstract]   [Full Text] [Related]  

  • 25. Ca 2+ -activated membrane ATPase: selective inhibition by ruthenium red.
    Watson EL; Vincenzi FF; Davis PW
    Biochim Biophys Acta; 1971 Dec; 249(2):606-10. PubMed ID: 4257327
    [No Abstract]   [Full Text] [Related]  

  • 26. On the ouabain-sensitive potassium activated p-nitrophenyl phosphatase activity of vascular muscle plasma membranes.
    Kwan CY; Grover AK; Daniel EE
    Arch Int Pharmacodyn Ther; 1984 Dec; 272(2):245-55. PubMed ID: 6098231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Allosteric changes of p-nitrophenylphosphatase from rat erythrocytes in fat deficiency.
    Goldemberg AL; Farías RN; Trucco RE
    J Biol Chem; 1972 Jul; 247(13):4299-304. PubMed ID: 4338484
    [No Abstract]   [Full Text] [Related]  

  • 28. Alkali cation-activated AMP deaminase of erythrocytes: some properties of the membrane-bound enzyme.
    Rao SN; Hara L; Askari A
    Biochim Biophys Acta; 1968 Mar; 151(3):651-4. PubMed ID: 4230808
    [No Abstract]   [Full Text] [Related]  

  • 29. The relationship of the K+-activated phosphatase to the Na+,K+-ATPase.
    Pitts BJ
    Ann N Y Acad Sci; 1974; 242(0):293-304. PubMed ID: 4372926
    [No Abstract]   [Full Text] [Related]  

  • 30. Properties of a membrane-bound phosphatase activity in normal and abnormal red blood cells.
    Delaunay J; Fischer S; Piau JP; Tortolero M; Schapira G
    Clin Chim Acta; 1979 Apr; 93(1):15-24. PubMed ID: 219973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The interaction of the (Na + ,K + )-ATPase of erythrocyte ghosts with ouabain.
    Lishko VK; Malysheva MK; Grevizirskaya TI
    Biochim Biophys Acta; 1972 Oct; 288(1):103-6. PubMed ID: 4264436
    [No Abstract]   [Full Text] [Related]  

  • 32. The behaviour of the sodium pump in red cells in the absence of external potassium.
    Garrahan PJ; Glynn IM
    J Physiol; 1967 Sep; 192(1):159-74. PubMed ID: 6051801
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of ATP and Na+ on a K+-activated phosphatase from red blood cell membranes.
    Rega AF; Garrahan PJ; Pouchan MI
    Biochim Biophys Acta; 1968 Jun; 150(4):742-4. PubMed ID: 4298268
    [No Abstract]   [Full Text] [Related]  

  • 34. A reminiscence about sodium, potassium-ATPase.
    Post RL
    Ann N Y Acad Sci; 1974; 242(0):6-11. PubMed ID: 4279609
    [No Abstract]   [Full Text] [Related]  

  • 35. Specific effects of spermine on ouabain-sensitive and potassium-dependent phosphatase activity of kidney plasma membranes. Specificity of the potassium sites.
    Tashima Y; Hasegawa M; Mizunuma H; Sakagishi Y
    Biochim Biophys Acta; 1977 May; 482(1):1-10. PubMed ID: 193567
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The K+-dependent phosphatase of rat kidney. Its properties and the effects of maneuvers that modify (Na+ + K+)-ATPase activity.
    Rodriguez HJ; Hogan WC; Sinha SK; Jacobson MP; Klahr S
    Biochim Biophys Acta; 1981 Feb; 641(1):36-54. PubMed ID: 6260182
    [No Abstract]   [Full Text] [Related]  

  • 37. Excess magnesium converts red cell (sodium+potassium) ATPase to the potassium phosphatase.
    Flatman PW; Lew VL
    J Physiol; 1980 Oct; 307():1-8. PubMed ID: 6259330
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemical, enzymological and permeability properties of human erythrocyte ghosts prepared by hypotonic lysis in media of different osmolarities.
    Bramley TA; Coleman R; Finean JB
    Biochim Biophys Acta; 1971 Sep; 241(3):752-69. PubMed ID: 4258591
    [No Abstract]   [Full Text] [Related]  

  • 39. [Relationships between monosaccharide transport and Mg-Na-K-ATP-ase in human erythrocytes and ghosts].
    Müller F; Dettmer D; Hartenstein H
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 90(2):259-64. PubMed ID: 4178876
    [No Abstract]   [Full Text] [Related]  

  • 40. Cation transport in erythrocytes of normal and porphyric cows: erythrocyte membrane adenosine triphosphatase activities.
    Keeton KS; Kaneko JJ
    Res Vet Sci; 1973 Nov; 15(3):275-84. PubMed ID: 4276082
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.